Menu Close

S-n-P-n-1-n-Q-n-P-n-1-n-Prove-if-true-S-gt-Q-




Question Number 10664 by FilupS last updated on 22/Feb/17
S=Σ_(n∉P_(n≥1) ) ^∞ n  Q=Σ_(n∈P_(n≥1) ) ^∞ n     Prove if true:  S>Q
$${S}=\underset{\underset{{n}\geqslant\mathrm{1}} {{n}\notin\mathbb{P}}} {\overset{\infty} {\sum}}{n} \\ $$$${Q}=\underset{\underset{{n}\geqslant\mathrm{1}} {{n}\in\mathbb{P}}} {\overset{\infty} {\sum}}{n} \\ $$$$\: \\ $$$$\mathrm{Prove}\:\mathrm{if}\:\mathrm{true}: \\ $$$${S}>{Q} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *