Menu Close

s-ut-1-2-at-2-t-2-2-u-a-t-2-s-a-0-by-the-use-of-quadratic-formula-t-2u-a-4u-2-a-2-4s-2-t-u-a-u-2-a-2-s-Victor-Francis-




Question Number 143597 by Videz last updated on 16/Jun/21
s = ut + (1/2)at^2   ⇒  t^2  + 2(u/a)t − 2(s/a) = 0  by the use of quadratic formula  t = ((−((2u)/a) ± (√(((4u^2 )/a^2 ) + 4s)))/2)  t = −(u/a)  ±  (√((u^2 /a^2 ) + s))  Victor  Francis
$${s}\:=\:{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}{at}^{\mathrm{2}} \:\:\Rightarrow\:\:{t}^{\mathrm{2}} \:+\:\mathrm{2}\frac{{u}}{{a}}{t}\:−\:\mathrm{2}\frac{{s}}{{a}}\:=\:\mathrm{0} \\ $$$${by}\:{the}\:{use}\:{of}\:{quadratic}\:{formula} \\ $$$${t}\:=\:\frac{−\frac{\mathrm{2}{u}}{{a}}\:\pm\:\sqrt{\frac{\mathrm{4}{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\mathrm{4}{s}}}{\mathrm{2}} \\ $$$${t}\:=\:−\frac{{u}}{{a}}\:\:\pm\:\:\sqrt{\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:{s}} \\ $$$${Victor}\:\:{Francis} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *