Menu Close

S-x-1-x-1-x-2-x-2-2-x-3-x-3-3-x-4-x-4-4-S-i-1-x-i-x-i-1-i-i-Does-S-limit-to-a-value-for-x-




Question Number 4454 by FilupSmith last updated on 29/Jan/16
S=((x−1)/(x+1))+((x−2)/(x^2 −2))+((x−3)/(x^3 +3))+((x−4)/(x^4 −4))+...    S=Σ_(i=1) ^∞ ((x−i)/(x^i −(−1)^i i))  Does S limit to a value for ±x?
S=x1x+1+x2x22+x3x3+3+x4x44+S=i=1xixi(1)iiDoesSlimittoavaluefor±x?
Commented by prakash jain last updated on 30/Jan/16
∣x∣≤1⇒does not converge as lim_(i→∞)  a_i ≠0  ∣x∣>1⇒converges. Ratio test.
x∣⩽1doesnotconvergeaslimiai0x∣>1converges.Ratiotest.
Answered by Jens last updated on 29/Jan/16
Probably yes if ⌈x]>1. Divide top   and bottom by i. Let i⇒∞ and  the  nominator ⇒−1 while the   denominator ⇒x^i /i ⇒∞ so each   term ⇒0 faster than necessary   for convergence. In fact Σ_1 ^∞  ix^(−i)   =−x(d/dx)((1/(x−1)))=(x/((x−1)^2 )) assuming  ∣x∣>1.
Probablyyesifx]>1.Dividetopandbottombyi.Letiandthenominator1whilethedenominatorxi/isoeachterm0fasterthannecessaryforconvergence.Infact1ixi=xddx(1x1)=x(x1)2assumingx∣>1.

Leave a Reply

Your email address will not be published. Required fields are marked *