Menu Close

scv2-bb3vjhkhbkj-nnmvhkvgj6vvfukfjjkhnkgwqqkin-ckkmnbmbjknn-




Question Number 1675 by hhhggvghhh last updated on 31/Aug/15
scv2{bb3vjhkhbkj}  nnmvhkvgj6vvfukfjjkhnkgwqqkin  ckkmnbmbjknn
$${scv}\mathrm{2}\left\{{bb}\mathrm{3}{vjhkhbkj}\right\} \\ $$$${nnmvhkvgj}\mathrm{6}{vvfukfjjkhnkgwqqkin} \\ $$$${ckkmnbmbjknn} \\ $$
Answered by 123456 last updated on 31/Aug/15
f_ω (z)=Π_(z_0 ∈ω) (z−z_0 )
$${f}_{\omega} \left({z}\right)=\underset{{z}_{\mathrm{0}} \in\omega} {\prod}\left({z}−{z}_{\mathrm{0}} \right) \\ $$
Answered by 123456 last updated on 31/Aug/15
r=p→q  s=(∼p)→(∼q)  t=(∼q)→(∼p)  p  q ∼p ∼q  r ∼r  s  t                      0  0    1     1  1    0  1  1   0  1    1     0  1    0  0  1  1  0    0     1  0    1  1  0  1  1    0     0  1    0  1  1  p→q≡(∼q)→(∼p)  p  q ∼p ∼q  p⇔q ∼(p⇔q) (∼p)⇔(∼q)  0  0    1     1      1              0                  1       0  1    1     0      0              1                  0  1  0    0     1      0              1                  0  1  1    0     0      1              0                  1  p⇔q≡(∼p)⇔(∼q)
$${r}={p}\rightarrow{q} \\ $$$${s}=\left(\sim{p}\right)\rightarrow\left(\sim{q}\right) \\ $$$${t}=\left(\sim{q}\right)\rightarrow\left(\sim{p}\right) \\ $$$${p}\:\:{q}\:\sim{p}\:\sim{q}\:\:{r}\:\sim{r}\:\:{s}\:\:{t}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{0}\:\:\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\mathrm{1}\:\:\:\:\mathrm{0}\:\:\mathrm{1}\:\:\mathrm{1}\: \\ $$$$\mathrm{0}\:\:\mathrm{1}\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{0}\:\:\mathrm{1}\:\:\:\:\mathrm{0}\:\:\mathrm{0}\:\:\mathrm{1} \\ $$$$\mathrm{1}\:\:\mathrm{0}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{1}\:\:\mathrm{0}\:\:\:\:\mathrm{1}\:\:\mathrm{1}\:\:\mathrm{0} \\ $$$$\mathrm{1}\:\:\mathrm{1}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}\:\:\mathrm{1}\:\:\:\:\mathrm{0}\:\:\mathrm{1}\:\:\mathrm{1} \\ $$$${p}\rightarrow{q}\equiv\left(\sim{q}\right)\rightarrow\left(\sim{p}\right) \\ $$$${p}\:\:{q}\:\sim{p}\:\sim{q}\:\:{p}\Leftrightarrow{q}\:\sim\left({p}\Leftrightarrow{q}\right)\:\left(\sim{p}\right)\Leftrightarrow\left(\sim{q}\right) \\ $$$$\mathrm{0}\:\:\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\: \\ $$$$\mathrm{0}\:\:\mathrm{1}\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0} \\ $$$$\mathrm{1}\:\:\mathrm{0}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0} \\ $$$$\mathrm{1}\:\:\mathrm{1}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$${p}\Leftrightarrow{q}\equiv\left(\sim{p}\right)\Leftrightarrow\left(\sim{q}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *