Menu Close

sdvanced-cslculus-if-x-R-and-x-0-x-e-t-1-t-ln-x-t-dt-then-prove-that-0-e-x-x-dx-2-




Question Number 136381 by mnjuly1970 last updated on 21/Mar/21
             ......sdvanced   cslculus......   if  x∈R^+  and::                 𝛗(x)=∫_0 ^( x) ((e^t −1)/t)ln((x/t))dt    then prove  that ::               Ψ=∫_0 ^( ∞) e^(−x) 𝛗(x)dx=ζ(2)
sdvancedcslculusifxR+and::ϕ(x)=0xet1tln(xt)dtthenprovethat::Ψ=0exϕ(x)dx=ζ(2)
Answered by Ñï= last updated on 21/Mar/21
Φ(x)=∫_0 ^x ((e^t −1)/t)ln((x/t))dt  =∫_0 ^1 ((1−e^(xt) )/t)lntdt  =∫_0 ^1 ((1−e^(x(1−t)) )/(1−t))ln(1−t)dt  Ψ=∫_0 ^∞ e^(−x) ∫_0 ^1 ((1−e^(x(1−t)) )/(1−t))ln(1−t)dtdx  =∫_0 ^∞ ∫_0 ^1 ((e^(−x) −e^(−xt) )/(1−t))ln(1−t)dtdx  =∫_0 ^1 ((1−(1/t))/(1−t))ln(1−t)dt  =−∫_0 ^1 ((ln(1−t))/t)dt  =Li_2 (1)
Φ(x)=0xet1tln(xt)dt=011exttlntdt=011ex(1t)1tln(1t)dtΨ=0ex011ex(1t)1tln(1t)dtdx=001exext1tln(1t)dtdx=0111t1tln(1t)dt=01ln(1t)tdt=Li2(1)
Commented by mnjuly1970 last updated on 21/Mar/21
thank you sir...grateful..
thankyousirgrateful..

Leave a Reply

Your email address will not be published. Required fields are marked *