Menu Close

sec-3-x-dx-




Question Number 76615 by mhmd last updated on 28/Dec/19
∫sec^3 x dx
$$\int{sec}^{\mathrm{3}} {x}\:{dx} \\ $$
Answered by $@ty@m123 last updated on 28/Dec/19
∫(√(1+tan^2 x)).sec^2 xdx  ∫(√(1+t^2 ))dt  (t/2)(√(1+t^2 ))+(1/2)ln (t+(√(1+t^2 ))) +C  where  t=tan x
$$\int\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}}.\mathrm{sec}\:^{\mathrm{2}} {xdx} \\ $$$$\int\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\frac{{t}}{\mathrm{2}}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}+\sqrt{\left.\mathrm{1}+{t}^{\mathrm{2}} \right)}\:+\mathrm{C}\right. \\ $$$${where}\:\:{t}=\mathrm{tan}\:{x} \\ $$
Answered by john santu last updated on 29/Dec/19
Commented by mhmd last updated on 29/Dec/19
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by john santu last updated on 29/Dec/19
your welcome sir
$${your}\:{welcome}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *