Menu Close

Selecting-randomly-an-integer-from-1-to-2000-find-the-probability-that-neither-6-nor-8-divides-the-integer-




Question Number 131631 by liberty last updated on 07/Feb/21
Selecting randomly an integer  from 1 to 2000 , find the probability  that neither 6 nor 8 divides the  integer.
Selectingrandomlyanintegerfrom1to2000,findtheprobabilitythatneither6nor8dividestheinteger.
Answered by som(math1967) last updated on 07/Feb/21
probability divisible by 6  ((333)/(2000))  [In the sereies 6,12....1998  1998=6+(n−1)×6 ∴n=333]  probability divisible by 8  =((250)/(2000))  [8+(n−1)×8=2000  ∴n=250]  probability divisible by both  6,8=((83)/(2000))  [1992=24+(n−1)×24  n=83]  ∴probability divisible by  6 or 8=((333)/(2000)) +((250)/(2000))−((83)/(2000))  =((500)/(2000))  ∴neither 6 nor 8   1−((500)/(2000))=((1500)/(2000))=(3/4)
probabilitydivisibleby63332000[Inthesereies6,12.19981998=6+(n1)×6n=333]probabilitydivisibleby8=2502000[8+(n1)×8=2000n=250]probabilitydivisiblebyboth6,8=832000[1992=24+(n1)×24n=83]probabilitydivisibleby6or8=3332000+2502000832000=5002000neither6nor815002000=15002000=34
Commented by liberty last updated on 07/Feb/21
typo sir it should be ((250)/(2000))[8n] =2000  n=250
typosiritshouldbe2502000[8n]=2000n=250
Commented by som(math1967) last updated on 07/Feb/21
yes sir,thank you
yessir,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *