Menu Close

Show-by-use-of-the-characteristics-of-a-vector-space-that-the-set-x-R-with-the-following-operations-and-builds-a-vector-space-Use-vector-space-axioms-x-y-be-x-y-for-R




Question Number 1537 by 2closedStringsMeet last updated on 17/Aug/15
Show by use of the characteristics of  a vector−space, that the set x^→ ∈R_+   with the following operations ⊕ and    builds a vector−space.  ∗Use vector−space axioms  ∗x^→ ⊕y^→     be   x^→ ∙y^→   ∗for λ∈R  set  λ x^→   equal x^(→λ)
$${Show}\:{by}\:{use}\:{of}\:{the}\:{characteristics}\:{of} \\ $$$${a}\:{vector}−{space},\:{that}\:{the}\:{set}\:\overset{\rightarrow} {{x}}\in\mathbb{R}_{+} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{following}\:\mathrm{operations}\:\oplus\:{and}\: \\ $$$${builds}\:{a}\:{vector}−{space}. \\ $$$$\ast{Use}\:{vector}−{space}\:{axioms} \\ $$$$\ast\overset{\rightarrow} {{x}}\oplus\overset{\rightarrow} {{y}}\:\:\:\:{be}\:\:\:\overset{\rightarrow} {{x}}\centerdot\overset{\rightarrow} {{y}} \\ $$$$\ast{for}\:\lambda\in\mathbb{R}\:\:{set}\:\:\lambda \overset{\rightarrow} {{x}}\:\:{equal}\:\overset{\rightarrow\lambda} {{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *