Menu Close

show-that-0-cos-x-e-2pi-x-1-dx-1-e-e-1-2-




Question Number 139612 by 676597498 last updated on 29/Apr/21
show that  ∫_0 ^( ∞) ((cos((√x)))/(e^(2π(√x)) −1))dx = 1−(e/((e−1)^2 ))
showthat0cos(x)e2πx1dx=1e(e1)2
Answered by Dwaipayan Shikari last updated on 29/Apr/21
2∫_0 ^∞ u((cos(u))/(e^(2πu) −1))du  =2Σ_(n=1) ^∞ ∫_0 ^∞ ue^(−2πnu) cos(u)du=Σ_(n=1) ^∞ ∫_0 ^∞ ue^(−u(2πn−i)) +ue^(−(2πn+i)) du  =Σ_(n=1) ^∞ (1/((2πn−i)^2 ))+(1/((2πn+i)^2 ))=(1/4)(Σ_(n=−∞) ^∞ (1/((πn+(i/2))^2 ))−(1/(((i/2))^2 )))  =(1/4).(1/(sin^2 ((i/2))))+1=1−(1/((e^(1/2) −e^(−(1/2)) )^2 ))=1−(e/((e−1)^2 ))
20ucos(u)e2πu1du=2n=10ue2πnucos(u)du=n=10ueu(2πni)+ue(2πn+i)du=n=11(2πni)2+1(2πn+i)2=14(n=1(πn+i2)21(i2)2)=14.1sin2(i2)+1=11(e12e12)2=1e(e1)2
Commented by 676597498 last updated on 29/Apr/21
thanks  pls explain the second line
thanksplsexplainthesecondline
Commented by Dwaipayan Shikari last updated on 30/Apr/21
∫_0 ^∞ ue^(−u(2πn−i)) du+ue^(−u(2πn+i)) du    u=(y/((2πn−i)))   u=(k/((2πn+i)))  =(1/((2πn−i)^2 ))∫_0 ^∞ ye^(−y) dy+(1/((2πn+i)^2 ))∫_0 ^∞ ke^(−k) dk  =((Γ(2))/((2πn−i)^2 ))+((Γ(2))/((2πn+i)^2 ))=(1/((2πn−i)^2 ))+(1/((2πn+i)^2 ))
0ueu(2πni)du+ueu(2πn+i)duu=y(2πni)u=k(2πn+i)=1(2πni)20yeydy+1(2πn+i)20kekdk=Γ(2)(2πni)2+Γ(2)(2πn+i)2=1(2πni)2+1(2πn+i)2
Commented by 676597498 last updated on 30/Apr/21
sorry sir i understood this  i meant the third line sir
sorrysiriunderstoodthisimeantthethirdlinesir
Commented by Dwaipayan Shikari last updated on 30/Apr/21
Generally  sinx=xΠ_(n=1) ^∞ (1−(x^2 /(π^2 n^2 )))  log(sinx)=log(x)+Σlog(1−(x/(πn)))+Σlog(1+(x/(πn)))  Differentiate both sides respect to x  ((cosx)/(sinx))=(1/x)+Σ((−(1/(πn)))/(1−(x/(πn))))+Σ((1/(πn))/(1+(x/(πn))))  cotx=(1/x)+Σ_(n=1) ^∞ (1/(x−πn))+Σ_(n=1) ^∞ (1/(x+πn))  cotx=Σ_(n=−∞) ^∞ (1/(x+πn)) ⇒(1/(sin^2 x))=Σ_(n=−∞) ^∞ (1/((x+πn)^2 )) (Differentiate again)
Generallysinx=xn=1(1x2π2n2)log(sinx)=log(x)+Σlog(1xπn)+Σlog(1+xπn)Differentiatebothsidesrespecttoxcosxsinx=1x+Σ1πn1xπn+Σ1πn1+xπncotx=1x+n=11xπn+n=11x+πncotx=n=1x+πn1sin2x=n=1(x+πn)2(Differentiateagain)
Commented by mnjuly1970 last updated on 30/Apr/21
thanks alot...
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *