Menu Close

Show-that-0-e-ix-2-dx-1-2-i-2-pi-2-




Question Number 6686 by FilupSmith last updated on 13/Jul/16
Show that:  ∫_0 ^( ∞) e^(−ix^2 ) dx=((1/2)−(i/2))(√(π/2))
Showthat:0eix2dx=(12i2)π2
Commented by FilupSmith last updated on 14/Jul/16
Is this correct???  I=∫_0 ^( ∞) e^(−ix^2 ) dx  I^2 =∫_0 ^( ∞) e^(−ix^2 ) dx∫_0 ^( ∞) e^(−iy^2 ) dy  I^2 =∫_0 ^( ∞) ∫_0 ^( ∞) e^(−i(x^2 +y^2 )) dxdy  r^2 =x^2 +y^2 ,  0≤r≤∞  x=rcosθ  y=rsinθ  0≤θ≤π/2  Jacobian J(r, θ)= [((∂x/∂r),(∂x/∂θ)),((∂y/∂r),(∂y/∂θ)) ]  J(r, θ)=(∂x/∂r) (∂y/∂θ)−(∂x/∂θ) (∂y/∂r)  =cosθ×rcosθ+rsinθ×sinθ  =r(cos^2 θ+sin^2 θ)  =r    ∴I^2 =∫_0 ^( (π/2)) ∫_0 ^( ∞) re^(−ir^2 ) drdθ
Isthiscorrect???I=0eix2dxI2=0eix2dx0eiy2dyI2=00ei(x2+y2)dxdyr2=x2+y2,0rx=rcosθy=rsinθ0θπ/2JacobianJ(r,θ)=[xrxθyryθ]J(r,θ)=xryθxθyr=cosθ×rcosθ+rsinθ×sinθ=r(cos2θ+sin2θ)=rI2=0π20reir2drdθ
Commented by prakash jain last updated on 14/Jul/16
Limit for θ should be from 0 to π/2  Since limits for x and  y cover complete  quadrant I.
Limitforθshouldbefrom0toπ/2SincelimitsforxandycovercompletequadrantI.
Commented by FilupSmith last updated on 14/Jul/16
Ah, thank you.  Is the jacobian correct?
Ah,thankyou.Isthejacobiancorrect?

Leave a Reply

Your email address will not be published. Required fields are marked *