Menu Close

Show-that-0-lnx-x-2-1-2-dx-pi-4-




Question Number 136210 by Ar Brandon last updated on 19/Mar/21
Show that ∫_0 ^∞ ((lnx)/((x^2 +1)^2 ))dx=−(π/4)
Showthat0lnx(x2+1)2dx=π4
Commented by Ar Brandon last updated on 19/Mar/21
Oh ! Thank You Sir  😃
Oh!ThankYouSir😃
Commented by Ar Brandon last updated on 19/Mar/21
Ω=∫_0 ^∞ ((lnx)/((x^2 +1)^2 ))dx       =(∂/∂s)∣_(s=0) ∫_0 ^∞ (x^s /((x^2 +1)^2 ))dx=^(u=x^2 ) (∂/∂s)∣_(s=0) (1/2)∫_0 ^∞ (u^((s/2)−(1/2)) /((u+1)^2 ))du       =(∂/∂s)∣_(s=0) (1/2)β((s/2)+(1/2), (3/2)−(s/2))=(∂/∂s)∣_(s=0) (1/2)Γ((s/2)+(1/2))Γ((3/2)−(s/2))       =(1/2)∣_(s=0) Γ((s/2)+(1/2))Γ′((3/2)−(s/2))+Γ((3/2)−(s/2))Γ′((s/2)+(1/2))       =(1/2)∙(1/2)Γ((1/2))Γ((3/2))[ψ((1/2))−ψ((3/2))]=(π/8)[ψ((1/2))−ψ((1/2))−2]=−(π/4)
Ω=0lnx(x2+1)2dx=ss=00xs(x2+1)2dx=u=x2ss=0120us212(u+1)2du=ss=012β(s2+12,32s2)=ss=012Γ(s2+12)Γ(32s2)=12s=0Γ(s2+12)Γ(32s2)+Γ(32s2)Γ(s2+12)=1212Γ(12)Γ(32)[ψ(12)ψ(32)]=π8[ψ(12)ψ(12)2]=π4
Commented by mnjuly1970 last updated on 19/Mar/21
  error  in sign of drivative  of  ψ((3/2)−s) .......  ′ = −ψ′((3/2)−s)             ...good luck my brother mr brandon...
errorinsignofdrivativeofψ(32s).=ψ(32s)goodluckmybrothermrbrandon
Answered by mnjuly1970 last updated on 19/Mar/21
    𝛗=^(x^2 =y) (1/4)∫_0 ^( ∞) ((y^(−(1/2)) ln(y))/((y+1)^2 ))dy      f(a)=∫_0 ^( ∞) (y^(a−(1/2)) /((y+1)^2 ))dy      𝛗=((f ′(0))/4) ...✓     f(a)=∫_0 ^( ∞)  (y^(a+(1/2)−1) /((y+1)^2 ))dy=β(a+(1/2),(3/2)−a)      f(a)=Γ(a+(1/2)).Γ((3/2)−a)    f ′(a)=Γ′(a+(1/2))Γ((3/2)−a)−Γ′((3/2)−a)Γ((1/2)+a)     𝛗=(1/4) f ′(0)=(1/4)((1/2)ψ((1/2))Γ^2 ((1/2))−(1/2)ψ((3/2))Γ^2 ((1/2)))         =(π/8)(ψ((1/2))−ψ((3/2)))         =(π/8)(ψ((1/2))−ψ((1/2))−2)=((−π)/4) ..✓✓
\boldsymbolϕ=x2=y140y12ln(y)(y+1)2dyf(a)=0ya12(y+1)2dy\boldsymbolϕ=f(0)4f(a)=0ya+121(y+1)2dy=β(a+12,32a)f(a)=Γ(a+12).Γ(32a)f(a)=Γ(a+12)Γ(32a)Γ(32a)Γ(12+a)\boldsymbolϕ=14f(0)=14(12ψ(12)Γ2(12)12ψ(32)Γ2(12))=π8(ψ(12)ψ(32))=π8(ψ(12)ψ(12)2)=π4..
Answered by Dwaipayan Shikari last updated on 19/Mar/21
(1/4)∫_0 ^∞ ((u^(−(1/2)) log(u))/((1+u)^2 ))du=(1/4)τ′((1/2))=∫_0 ^∞ ((log(x))/((x^2 +1)^2 ))dx  τ(α)=∫_0 ^∞ (u^(α−1) /((1+u)^2 ))du=((Γ(α)Γ(2−α))/(Γ(2)))=((π(1−α))/(sin(πα)))  ⇒τ′(α)=∫_0 ^∞ ((u^(α−1) log(u))/((1+u)^2 ))du=−π^2 cosec(πα)cot(πα)−(π/(sin(πα)))  (1/4)τ′((1/2))=−0−(π/4)=−(π/4)
140u12log(u)(1+u)2du=14τ(12)=0log(x)(x2+1)2dxτ(α)=0uα1(1+u)2du=Γ(α)Γ(2α)Γ(2)=π(1α)sin(πα)τ(α)=0uα1log(u)(1+u)2du=π2cosec(πα)cot(πα)πsin(πα)14τ(12)=0π4=π4
Commented by Ar Brandon last updated on 19/Mar/21
Thanks bro
Thanksbro
Commented by Dwaipayan Shikari last updated on 19/Mar/21
  😃
😃
Answered by Ajetunmobi last updated on 19/Mar/21
  i have drop the solution before here
\boldsymboli\boldsymbolhave\boldsymboldrop\boldsymbolthe\boldsymbolsolution\boldsymbolbefore\boldsymbolhere
Commented by Ar Brandon last updated on 19/Mar/21
Alright !  Before posting I used the search option   to check if it was previously posted but   couldn′t find it. Thank You Sir
Alright!BeforepostingIusedthesearchoptiontocheckifitwaspreviouslypostedbutcouldntfindit.ThankYouSir
Commented by Ajetunmobi last updated on 19/Mar/21
  ok
\boldsymbolok
Answered by Ajetunmobi last updated on 19/Mar/21
Answered by mathmax by abdo last updated on 19/Mar/21
let f(a)=∫_0 ^∞  ((lnx)/(x^2  +a^2 ))dx with a>0 ⇒f^′ (a)=−2a∫_0 ^∞  ((lnx)/((x^2  +a^2 )^2 ))dx ⇒  f^′ (1)=−2∫_0 ^∞   ((lnx)/((x^2  +1)^2 )) ⇒∫_0 ^∞  ((lnx)/((x^2  +1)^2 ))=−(1/2)f^′ (1)  f(a) =_(x=at)    ∫_0 ^∞ ((lna +lnt)/(a^2 (1+t^2 )))adt =(1/a)∫_0 ^∞  ((lna+lnt)/((1+t^2 )))dt  =((lna)/a)∫_0 ^∞ (dt/(1+t^2 )) +(1/a)∫_0 ^∞  ((lnt)/(1+t^2 ))dt  but ∫_0 ^∞  ((lnt)/(1+t^2 ))dt=0(proved) ⇒  f(a)=((lna)/a).(π/2) =((πlna)/(2a)) ⇒f^′ (a)=(((π/a)(2a)−2πlna)/(4a^2 )) ⇒f^′ (1)=((2π)/4)=(π/2) ⇒  ∫_0 ^∞  ((lnx)/((x^2  +1)^2 ))dx =−(1/2).(π/2)=−(π/4)
letf(a)=0lnxx2+a2dxwitha>0f(a)=2a0lnx(x2+a2)2dxf(1)=20lnx(x2+1)20lnx(x2+1)2=12f(1)f(a)=x=at0lna+lnta2(1+t2)adt=1a0lna+lnt(1+t2)dt=lnaa0dt1+t2+1a0lnt1+t2dtbut0lnt1+t2dt=0(proved)f(a)=lnaa.π2=πlna2af(a)=πa(2a)2πlna4a2f(1)=2π4=π20lnx(x2+1)2dx=12.π2=π4
Commented by mathmax by abdo last updated on 19/Mar/21
folow my facebook  (abdo imad)
folowmyfacebook(abdoimad)
Commented by Ajetunmobi last updated on 19/Mar/21
  sir mathmax by abdo  how can we chat privately sir i need to  talk about something with you   you can send me your whatsapp number  or your facebook name   Thanks
\boldsymbolsir\boldsymbolmathmax\boldsymbolby\boldsymbolabdo\boldsymbolhow\boldsymbolcan\boldsymbolwe\boldsymbolchat\boldsymbolprivately\boldsymbolsir\boldsymboli\boldsymbolneed\boldsymbolto\boldsymboltalk\boldsymbolabout\boldsymbolsomething\boldsymbolwith\boldsymbolyou\boldsymbolyou\boldsymbolcan\boldsymbolsend\boldsymbolme\boldsymbolyour\boldsymbolwhatsapp\boldsymbolnumber\boldsymbolor\boldsymbolyour\boldsymbolfacebook\boldsymbolname\boldsymbolThanks
Commented by Ajetunmobi last updated on 20/Mar/21
  there are many abdo imad there   how will i recognize you sir?
\boldsymbolthere\boldsymbolare\boldsymbolmany\boldsymbolabdo\boldsymbolimad\boldsymbolthere\boldsymbolhow\boldsymbolwill\boldsymboli\boldsymbolrecognize\boldsymbolyou\boldsymbolsir?

Leave a Reply

Your email address will not be published. Required fields are marked *