Menu Close

Show-that-1-3n-lt-n-2-for-every-positive-integer-n-4-




Question Number 142379 by Rexzie last updated on 30/May/21
Show that 1+3n<n^2  for every positive integer n≥4
$${Show}\:{that}\:\mathrm{1}+\mathrm{3}{n}<{n}^{\mathrm{2}} \:{for}\:{every}\:{positive}\:{integer}\:{n}\geqslant\mathrm{4} \\ $$
Commented by mr W last updated on 30/May/21
n≥4  n^2 ≥4n=3n+n≥3n+4>3n+1
$${n}\geqslant\mathrm{4} \\ $$$${n}^{\mathrm{2}} \geqslant\mathrm{4}{n}=\mathrm{3}{n}+{n}\geqslant\mathrm{3}{n}+\mathrm{4}>\mathrm{3}{n}+\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *