Menu Close

show-that-1-gamma-function-lim-n-H-n-ln-n-




Question Number 2818 by prakash jain last updated on 27/Nov/15
show that  Γ′(1)=−γ  Γ gamma function  γ=lim_(n→∞) [H_n −ln n]
showthatΓ(1)=γΓgammafunctionγ=limn[Hnlnn]
Answered by 123456 last updated on 30/Nov/15
Γ(x)=∫_0 ^(+∞) t^(x−1) e^(−t) dt (x>0)  Γ′(x)=∫_0 ^(+∞) t^(x−1) ln t e^(−t) dt  Γ′(1)=∫_0 ^(+∞) ln t e^(−t) dt (Q2435)  e^(−t) =lim_(n→+∞) (1−(t/n))^n   Γ(x)=lim_(n→+∞) ∫_0 ^n t^(x−1) (1−(t/n))^n dt  u=t/n,du=dt/n t=0,u=0 t=n,u=1  Γ(x)=lim_(n→∞) ∫_0 ^1 (un)^(x−1) (1−u)^n (du∙n)  =lim_(n→∞)  n^x ∫_0 ^1 u^(x−1) (1−u)^n du  integral by parts  a=(1−u)^n ,da=−n(1−u)^(n−1) du  db=u^(x−1) du,b=u^x /x  =lim_(n→∞)  n^x (n/x)∫_0 ^1 u^x (1−u)^(n−1) du  ⋮  =lim_(n→∞) ((n^x n...1)/(x(x+1)...(x+n−1)))∫_0 ^1 u^(x+n−1) du  =lim_(n→∞) ((n^x n!)/(x(x+1)...(x+n)))         (Q2845)  =lim_(n→∞) ((n^x n!)/(Π_(l=0) ^n x+l))  Γ(z+1)=zΓ(z)  ln Γ(z+1)=ln z+ln Γ(z)  =lim_(n→+∞) ln (n!n^z )−Σ_(l=1) ^n ln (z+k)  ψ(z+1)=lim_(n→∞)  ln n−Σ_(l=1) ^n (1/(z+l))  (1/(z+l))=(l/(l(z+l)))  =(1/l)∙(l/(z+l))  =(1/l)∙((z+l−z)/(z+l))  =(1/l)(1−(z/(z+l)))  =(1/l)−(z/(l(z+l)))  so  ψ(z+1)=lim_(n→∞)  ln n−Σ_(l=1) ^n (1/l)+Σ_(l=1) ^n (z/(l(z+l)))  =−lim_(n→∞) (Σ_(l=1) ^n (1/l)−ln n)+Σ_(l=1) ^(+∞) (z/(l(z+l)))  =−γ+Σ_(l=1) ^(+∞) (z/(l(z+l)))  take z=0  ψ(1)=−γ  ψ(x)=(d/dx)ln Γ(x)  ψ(x)=((Γ′(x))/(Γ(x)))  Γ′(x)=ψ(x)Γ(x)  Γ′(1)=ψ(1)Γ(1)=ψ(1)=−γ □
Γ(x)=+0tx1etdt(x>0)Γ(x)=+0tx1lntetdtΓ(1)=+0lntetdt(Q2435)et=limn+(1tn)nΓ(x)=limn+n0tx1(1tn)ndtu=t/n,du=dt/nt=0,u=0t=n,u=1Γ(x)=limn10(un)x1(1u)n(dun)=limnnx10ux1(1u)nduintegralbypartsa=(1u)n,da=n(1u)n1dudb=ux1du,b=ux/x=limnnxnx10ux(1u)n1du=limnnxn1x(x+1)(x+n1)10ux+n1du=limnnxn!x(x+1)(x+n)(Q2845)=limnnxn!nl=0x+lΓ(z+1)=zΓ(z)lnΓ(z+1)=lnz+lnΓ(z)=limlnn+(n!nz)nl=1ln(z+k)ψ(z+1)=limnlnnnl=11z+l1z+l=ll(z+l)=1llz+l=1lz+lzz+l=1l(1zz+l)=1lzl(z+l)soψ(z+1)=limnlnnnl=11l+nl=1zl(z+l)=limn(nl=11llnn)++l=1zl(z+l)=γ++l=1zl(z+l)takez=0ψ(1)=γψ(x)=ddxlnΓ(x)ψ(x)=Γ(x)Γ(x)Γ(x)=ψ(x)Γ(x)Γ(1)=ψ(1)Γ(1)=ψ(1)=γ◻

Leave a Reply

Your email address will not be published. Required fields are marked *