show-that-1-gamma-function-lim-n-H-n-ln-n- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 2818 by prakash jain last updated on 27/Nov/15 showthatΓ′(1)=−γΓgammafunctionγ=limn→∞[Hn−lnn] Answered by 123456 last updated on 30/Nov/15 Γ(x)=∫+∞0tx−1e−tdt(x>0)Γ′(x)=∫+∞0tx−1lnte−tdtΓ′(1)=∫+∞0lnte−tdt(Q2435)e−t=limn→+∞(1−tn)nΓ(x)=limn→+∞∫n0tx−1(1−tn)ndtu=t/n,du=dt/nt=0,u=0t=n,u=1Γ(x)=limn→∞∫10(un)x−1(1−u)n(du⋅n)=limn→∞nx∫10ux−1(1−u)nduintegralbypartsa=(1−u)n,da=−n(1−u)n−1dudb=ux−1du,b=ux/x=limn→∞nxnx∫10ux(1−u)n−1du⋮=limn→∞nxn…1x(x+1)…(x+n−1)∫10ux+n−1du=limn→∞nxn!x(x+1)…(x+n)(Q2845)=limn→∞nxn!∏nl=0x+lΓ(z+1)=zΓ(z)lnΓ(z+1)=lnz+lnΓ(z)=limlnn→+∞(n!nz)−∑nl=1ln(z+k)ψ(z+1)=limn→∞lnn−∑nl=11z+l1z+l=ll(z+l)=1l⋅lz+l=1l⋅z+l−zz+l=1l(1−zz+l)=1l−zl(z+l)soψ(z+1)=limn→∞lnn−∑nl=11l+∑nl=1zl(z+l)=−limn→∞(∑nl=11l−lnn)+∑+∞l=1zl(z+l)=−γ+∑+∞l=1zl(z+l)takez=0ψ(1)=−γψ(x)=ddxlnΓ(x)ψ(x)=Γ′(x)Γ(x)Γ′(x)=ψ(x)Γ(x)Γ′(1)=ψ(1)Γ(1)=ψ(1)=−γ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Consider-the-equations-of-two-intersecting-straight-lines-ax-by-c-0-a-1-x-b-1-y-c-1-0-Find-the-equation-of-straight-line-passing-through-a-given-point-x-0-y-0-and-the-intersection-Next Next post: We-have-the-idea-of-Phythagorian-triples-as-solutions-x-y-z-to-the-equation-x-2-y-2-z-2-where-x-y-z-Z-How-frequently-do-solutions-x-y-z-t-to-the-equation- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.