Menu Close

Show-that-180-2cos-1-2-13-sin-1-12-13-




Question Number 6183 by Rasheed Soomro last updated on 17/Jun/16
Show that  180°−2cos^(−1)  (2/( (√(13))))=sin^(−1) (((12)/(13)))
$${Show}\:{that} \\ $$$$\mathrm{180}°−\mathrm{2cos}^{−\mathrm{1}} \:\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{12}}{\mathrm{13}}\right) \\ $$
Answered by Yozzii last updated on 18/Jun/16
π−2acos(2/(√(13)))=asin(12/13)  −−−−−−−−−−−−−−−−−−−−  Let u=π−2acos(2/(√(13))).  ∴sinu=sin(π−2acos(2/(√(13)))  sinu=sinπcos(2acos(2/(√(13))))−sin(2acos(2/(√(13)))cosπ  sinu=sin(2cos^(−1) (2/( (√(13)))))  sinu=2sin(cos^(−1) (2/( (√(13)))))cos(cos^(−1) (2/( (√(13)))))  sinu=(4/( (√(13))))sin(cos^(−1) (2/( (√(13)))))  Let r=cos^(−1) (2/( (√(13))))⇒cosr=(2/( (√(13))))     ⇒sinr=((√(13−4))/( (√(13))))=(3/( (√(13)))).  ⇒r=sin^(−1) (3/( (√(13)))) as principle result.  ∴sinu=(4/( (√(13))))sin(sin^(−1) (3/( (√(13)))))  sinu=(4/( (√(13))))×(3/( (√(13))))=((12)/(13))⇒u=sin^(−1) ((12)/(13))  as principle result.  or π−2cos^(−1) (2/( (√(13))))=sin^(−1) ((12)/(13)) (shown).
$$\pi−\mathrm{2}{acos}\left(\mathrm{2}/\sqrt{\mathrm{13}}\right)={asin}\left(\mathrm{12}/\mathrm{13}\right) \\ $$$$−−−−−−−−−−−−−−−−−−−− \\ $$$${Let}\:{u}=\pi−\mathrm{2}{acos}\left(\mathrm{2}/\sqrt{\mathrm{13}}\right). \\ $$$$\therefore{sinu}={sin}\left(\pi−\mathrm{2}{acos}\left(\mathrm{2}/\sqrt{\mathrm{13}}\right)\right. \\ $$$${sinu}={sin}\pi{cos}\left(\mathrm{2}{acos}\left(\mathrm{2}/\sqrt{\mathrm{13}}\right)\right)−{sin}\left(\mathrm{2}{acos}\left(\mathrm{2}/\sqrt{\mathrm{13}}\right){cos}\pi\right. \\ $$$${sinu}={sin}\left(\mathrm{2}{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\right) \\ $$$${sinu}=\mathrm{2}{sin}\left({cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\right){cos}\left({cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\right) \\ $$$${sinu}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{13}}}{sin}\left({cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\right) \\ $$$${Let}\:{r}={cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\Rightarrow{cosr}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\:\:\: \\ $$$$\Rightarrow{sinr}=\frac{\sqrt{\mathrm{13}−\mathrm{4}}}{\:\sqrt{\mathrm{13}}}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}. \\ $$$$\Rightarrow{r}={sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\:{as}\:{principle}\:{result}. \\ $$$$\therefore{sinu}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{13}}}{sin}\left({sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\right) \\ $$$${sinu}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{13}}}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}=\frac{\mathrm{12}}{\mathrm{13}}\Rightarrow{u}={sin}^{−\mathrm{1}} \frac{\mathrm{12}}{\mathrm{13}}\:\:{as}\:{principle}\:{result}. \\ $$$${or}\:\pi−\mathrm{2}{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}={sin}^{−\mathrm{1}} \frac{\mathrm{12}}{\mathrm{13}}\:\left({shown}\right). \\ $$
Commented by Rasheed Soomro last updated on 18/Jun/16
THANKS !
$$\mathscr{THANKS}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *