Menu Close

Show-that-3-2n-1-5-2n-1-8-is-an-integer-for-n-Z-




Question Number 2748 by Rasheed Soomro last updated on 26/Nov/15
Show that ((3^(2n+1) +5^(2n+1) )/8) is an integer for n∈Z^+  .
Showthat32n+1+52n+18isanintegerfornZ+.
Answered by prakash jain last updated on 26/Nov/15
f(n)=3^(2n+1) +5^(2n+1)   f(1)=27+125=152=19×8  Let us say f(n) 3^(2n+1) +5^(2n+1)  is divisible by 8.  f(n+1)=3^(2n+3) +5^(2n+3)   f(n+1)−f(n)=3^(2n+3) −3^(2n+1) +5^(2n+3) −5^(2n+1)   =3^(2n+1) (8)+5^(2n+1) (24)  =8(3^(2n+1) +3∙5^(2n+1) )  ∵ ((f(n))/8)=k⇒f(n)=8k, k∈N  f(n+1)=8(3^(2n+1) +3∙5^(2n+1) )+8k  f(n+1)=8(3^(2n+1) +3∙5^(2n+1) +k)  ∴ f(n+1) is divisible by 8 or  ((f(n+1))/8) is an integer.
f(n)=32n+1+52n+1f(1)=27+125=152=19×8Letussayf(n)32n+1+52n+1isdivisibleby8.f(n+1)=32n+3+52n+3f(n+1)f(n)=32n+332n+1+52n+352n+1=32n+1(8)+52n+1(24)=8(32n+1+352n+1)f(n)8=kf(n)=8k,kNf(n+1)=8(32n+1+352n+1)+8kf(n+1)=8(32n+1+352n+1+k)f(n+1)isdivisibleby8orf(n+1)8isaninteger.
Commented by RasheedAhmad last updated on 26/Nov/15
Nice!
Nice!

Leave a Reply

Your email address will not be published. Required fields are marked *