Menu Close

Show-that-f-x-x-2-x-odd-




Question Number 5234 by sanusihammed last updated on 02/May/16
Show that f(x) = x^2  .  ∣x∣  =  odd
$${Show}\:{that}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:.\:\:\mid{x}\mid\:\:=\:\:{odd} \\ $$
Answered by prakash jain last updated on 02/May/16
a. x≥0  f(x)=x^2 ∙x=x^3   f(−x)=x^2 (−x)=−x^3     b. x<0  f(x)=x^2 (−x)=−x^3   f(−x)=x^2 ∙x=x^3     f(x)=−f(x)
$${a}.\:{x}\geqslant\mathrm{0} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \centerdot{x}={x}^{\mathrm{3}} \\ $$$${f}\left(−{x}\right)={x}^{\mathrm{2}} \left(−{x}\right)=−{x}^{\mathrm{3}} \\ $$$$ \\ $$$${b}.\:{x}<\mathrm{0} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \left(−{x}\right)=−{x}^{\mathrm{3}} \\ $$$${f}\left(−{x}\right)={x}^{\mathrm{2}} \centerdot{x}={x}^{\mathrm{3}} \\ $$$$ \\ $$$${f}\left({x}\right)=−{f}\left({x}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *