Menu Close

show-that-for-all-integer-n-n-1-divides-2n-n-




Question Number 73755 by ~blr237~ last updated on 15/Nov/19
show that   for all integer  n ,  n+1 divides  (((2n)),(n) )
showthatforallintegern,n+1divides(2nn)
Answered by mind is power last updated on 15/Nov/19
 (((2n)),(n) )=(((2n)!)/(n!n!))∈N  (n/(n+1)) (((2n)),(n) )=((2n!)/(n!.(n)!)).(n/(n+1))=((2n!)/((n−1)!.(n+1)!))= (((2n)),((n+1)) )  ⇔n (((2n)),(n) )=(n+1) (((2n)),((n+1)) )  since n and n+1 are coprim  we have n+1∣(n+1) (((2n)),((n+1)) )=n (((2n)),(n) )⇒(n+1)∣n. (((2n)),(n) )  n+1 and n are coprime⇒(n+1)∣ (((2n)),(n) )
(2nn)=(2n)!n!n!Nnn+1(2nn)=2n!n!.(n)!.nn+1=2n!(n1)!.(n+1)!=(2nn+1)n(2nn)=(n+1)(2nn+1)sincenandn+1arecoprimwehaven+1(n+1)(2nn+1)=n(2nn)(n+1)n.(2nn)n+1andnarecoprime(n+1)(2nn)
Commented by MJS last updated on 15/Nov/19
great!
great!
Commented by mind is power last updated on 15/Nov/19
thanx sir mjs
thanxsirmjs

Leave a Reply

Your email address will not be published. Required fields are marked *