Menu Close

Show-that-for-any-arbitary-constants-A-and-B-y-A-sinx-1-x-cosx-B-cosx-1-x-sinx-satisfy-the-differential-equation-d-2-y-dx-2-1-2-x-2-y-0-




Question Number 9011 by tawakalitu last updated on 13/Nov/16
Show that for any arbitary constants A and B  y = A(sinx + (1/x)cosx) + B(cosx − (1/x)sinx) satisfy  the differential equation   (d^2 y/dx^2 ) + (1 − (2/x^2 ))y = 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{arbitary}\:\mathrm{constants}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B} \\ $$$$\mathrm{y}\:=\:\mathrm{A}\left(\mathrm{sinx}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\mathrm{cosx}\right)\:+\:\mathrm{B}\left(\mathrm{cosx}\:−\:\frac{\mathrm{1}}{\mathrm{x}}\mathrm{sinx}\right)\:\mathrm{satisfy} \\ $$$$\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:+\:\left(\mathrm{1}\:−\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }\right)\mathrm{y}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *