Menu Close

Show-that-Limit-3-x-3-x-3-x-3-x-1-x-




Question Number 5704 by sanusihammed last updated on 24/May/16
Show that ...    Limit      [((3^x  − 3^(−x) )/(3^(x )  + 3^(−x) ))] = − 1  x → −∞
$${Show}\:{that}\:… \\ $$$$ \\ $$$${Limit}\:\:\:\:\:\:\left[\frac{\mathrm{3}^{{x}} \:−\:\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}\:} \:+\:\mathrm{3}^{−{x}} }\right]\:=\:−\:\mathrm{1} \\ $$$${x}\:\rightarrow\:−\infty \\ $$
Answered by FilupSmith last updated on 24/May/16
L=lim_(x→−∞)  ((3^x −3^(−x) )/(3^x +3^(−x) ))  =lim_(x→−∞)  ((3^x −(1/3^x ))/(3^x +(1/3^x )))  =lim_(x→−∞)  (((3^(2x) −1)/3^x )/((3^(2x) +1)/3^x ))  =lim_(x→−∞)  ((3^x (3^(2x) −1))/(3^x (3^(2x) +1)))  =lim_(x→−∞)  ((3^(2x) −1)/(3^(2x) +1))  use quotant rule  =lim_(x→−∞)  ((3^(2x) −1)/(3^(2(−∞)) +1))  =lim_(x→−∞)  ((3^(2x) −1)/1)  =lim_(x→−∞)  3^(2x) −1  L=−1
$${L}=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} } \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} −\frac{\mathrm{1}}{\mathrm{3}^{{x}} }}{\mathrm{3}^{{x}} +\frac{\mathrm{1}}{\mathrm{3}^{{x}} }} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{{x}} }}{\frac{\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}}{\mathrm{3}^{{x}} }} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{x}} \left(\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}\right)}{\mathrm{3}^{{x}} \left(\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}\right)} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$$$\mathrm{use}\:\mathrm{quotant}\:\mathrm{rule} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}\left(−\infty\right)} +\mathrm{1}} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1}}{\mathrm{1}} \\ $$$$=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{3}^{\mathrm{2}{x}} −\mathrm{1} \\ $$$${L}=−\mathrm{1} \\ $$
Commented by Yozzii last updated on 24/May/16
The definition of the limit of f(x) to −∞,  if it exists,can be used to verify that the limit  found is plausible.  −−−−−−−−−−−−−−−−−−−−−  According to the ε−δ definition of  the limit lim_(x→−∞) f(x)=l, for any ε>0 there  exists a number δ<0 such that ∣f(x)−l∣<ε whenever x<δ.  Suppose that δ=((ln(2ε^(−1) −1)^(−1) )/(2ln3)), (2ε^(−1) −1>0⇒ε<2 which is appropriate for closeness)  Then, if x<δ  ⇒x<((ln(2ε^(−1) −1)^(−1) )/(2ln3))  ln3^(2x) <−ln(2ε^(−1) −1)  ln3^(−2x) >ln(2ε^(−1) −1)  3^(−2x) >2ε^(−1) −1  3^(−2x) +1>2ε^(−1)   (2/(1+3^(−2x) ))<ε  ((2×3^x )/(3^x +3^(−x) ))<ε  ((2×3^x +3^(−x) −3^(−x) )/(3^x +3^(−x) ))<ε  ((3^x −3^(−x) +3^x +3^(−x) )/(3^x +3^(−x) ))<ε  ((3^x −3^(−x) )/(3^x +3^(−x) ))+1<ε  ⇒∣((3^x −3^(−x) )/(3^x +3^(−x) ))+1∣<∣ε∣=ε     ∵ ε>0  ∴∣((3^x −3^(−x) )/(3^x +3^(−x) ))−(−1)∣<ε   whenever   x<δ=((ln(2ε^(−1) −1))/(−2ln3)).  So indeed lim_(x→−∞) ((3^x −3^(−x) )/(3^x +3^(−x) ))=−1.
$${The}\:{definition}\:{of}\:{the}\:{limit}\:{of}\:{f}\left({x}\right)\:{to}\:−\infty, \\ $$$${if}\:{it}\:{exists},{can}\:{be}\:{used}\:{to}\:{verify}\:{that}\:{the}\:{limit} \\ $$$${found}\:{is}\:{plausible}. \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$${According}\:{to}\:{the}\:\epsilon−\delta\:{definition}\:{of} \\ $$$${the}\:{limit}\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{f}\left({x}\right)={l},\:{for}\:{any}\:\epsilon>\mathrm{0}\:{there} \\ $$$${exists}\:{a}\:{number}\:\delta<\mathrm{0}\:{such}\:{that}\:\mid{f}\left({x}\right)−{l}\mid<\epsilon\:{whenever}\:{x}<\delta. \\ $$$${Suppose}\:{that}\:\delta=\frac{{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right)^{−\mathrm{1}} }{\mathrm{2}{ln}\mathrm{3}},\:\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}>\mathrm{0}\Rightarrow\epsilon<\mathrm{2}\:{which}\:{is}\:{appropriate}\:{for}\:{closeness}\right) \\ $$$${Then},\:{if}\:{x}<\delta \\ $$$$\Rightarrow{x}<\frac{{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right)^{−\mathrm{1}} }{\mathrm{2}{ln}\mathrm{3}} \\ $$$${ln}\mathrm{3}^{\mathrm{2}{x}} <−{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right) \\ $$$${ln}\mathrm{3}^{−\mathrm{2}{x}} >{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right) \\ $$$$\mathrm{3}^{−\mathrm{2}{x}} >\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1} \\ $$$$\mathrm{3}^{−\mathrm{2}{x}} +\mathrm{1}>\mathrm{2}\epsilon^{−\mathrm{1}} \\ $$$$\frac{\mathrm{2}}{\mathrm{1}+\mathrm{3}^{−\mathrm{2}{x}} }<\epsilon \\ $$$$\frac{\mathrm{2}×\mathrm{3}^{{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }<\epsilon \\ $$$$\frac{\mathrm{2}×\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }<\epsilon \\ $$$$\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} +\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }<\epsilon \\ $$$$\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }+\mathrm{1}<\epsilon \\ $$$$\Rightarrow\mid\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }+\mathrm{1}\mid<\mid\epsilon\mid=\epsilon\:\:\:\:\:\because\:\epsilon>\mathrm{0} \\ $$$$\therefore\mid\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }−\left(−\mathrm{1}\right)\mid<\epsilon\:\:\:{whenever}\:\:\:{x}<\delta=\frac{{ln}\left(\mathrm{2}\epsilon^{−\mathrm{1}} −\mathrm{1}\right)}{−\mathrm{2}{ln}\mathrm{3}}. \\ $$$${So}\:{indeed}\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\frac{\mathrm{3}^{{x}} −\mathrm{3}^{−{x}} }{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }=−\mathrm{1}. \\ $$
Commented by sanusihammed last updated on 24/May/16
Thanks
$${Thanks} \\ $$
Commented by sanusihammed last updated on 24/May/16
i really appreciate
$${i}\:{really}\:{appreciate}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *