Menu Close

Show-that-Limit-3-x-3-x-3-x-3-x-1-x-




Question Number 5704 by sanusihammed last updated on 24/May/16
Show that ...    Limit      [((3^x  − 3^(−x) )/(3^(x )  + 3^(−x) ))] = − 1  x → −∞
ShowthatLimit[3x3x3x+3x]=1x
Answered by FilupSmith last updated on 24/May/16
L=lim_(x→−∞)  ((3^x −3^(−x) )/(3^x +3^(−x) ))  =lim_(x→−∞)  ((3^x −(1/3^x ))/(3^x +(1/3^x )))  =lim_(x→−∞)  (((3^(2x) −1)/3^x )/((3^(2x) +1)/3^x ))  =lim_(x→−∞)  ((3^x (3^(2x) −1))/(3^x (3^(2x) +1)))  =lim_(x→−∞)  ((3^(2x) −1)/(3^(2x) +1))  use quotant rule  =lim_(x→−∞)  ((3^(2x) −1)/(3^(2(−∞)) +1))  =lim_(x→−∞)  ((3^(2x) −1)/1)  =lim_(x→−∞)  3^(2x) −1  L=−1
L=limx3x3x3x+3x=limx3x13x3x+13x=limx32x13x32x+13x=limx3x(32x1)3x(32x+1)=limx32x132x+1usequotantrule=limx32x132()+1=limx32x11=limx32x1L=1
Commented by Yozzii last updated on 24/May/16
The definition of the limit of f(x) to −∞,  if it exists,can be used to verify that the limit  found is plausible.  −−−−−−−−−−−−−−−−−−−−−  According to the ε−δ definition of  the limit lim_(x→−∞) f(x)=l, for any ε>0 there  exists a number δ<0 such that ∣f(x)−l∣<ε whenever x<δ.  Suppose that δ=((ln(2ε^(−1) −1)^(−1) )/(2ln3)), (2ε^(−1) −1>0⇒ε<2 which is appropriate for closeness)  Then, if x<δ  ⇒x<((ln(2ε^(−1) −1)^(−1) )/(2ln3))  ln3^(2x) <−ln(2ε^(−1) −1)  ln3^(−2x) >ln(2ε^(−1) −1)  3^(−2x) >2ε^(−1) −1  3^(−2x) +1>2ε^(−1)   (2/(1+3^(−2x) ))<ε  ((2×3^x )/(3^x +3^(−x) ))<ε  ((2×3^x +3^(−x) −3^(−x) )/(3^x +3^(−x) ))<ε  ((3^x −3^(−x) +3^x +3^(−x) )/(3^x +3^(−x) ))<ε  ((3^x −3^(−x) )/(3^x +3^(−x) ))+1<ε  ⇒∣((3^x −3^(−x) )/(3^x +3^(−x) ))+1∣<∣ε∣=ε     ∵ ε>0  ∴∣((3^x −3^(−x) )/(3^x +3^(−x) ))−(−1)∣<ε   whenever   x<δ=((ln(2ε^(−1) −1))/(−2ln3)).  So indeed lim_(x→−∞) ((3^x −3^(−x) )/(3^x +3^(−x) ))=−1.
Thedefinitionofthelimitoff(x)to,ifitexists,canbeusedtoverifythatthelimitfoundisplausible.Accordingtotheϵδdefinitionofthelimitlimxf(x)=l,foranyϵ>0thereexistsanumberδ<0suchthatf(x)l∣<ϵwheneverx<δ.Supposethatδ=ln(2ϵ11)12ln3,(2ϵ11>0ϵ<2whichisappropriateforcloseness)Then,ifx<δx<ln(2ϵ11)12ln3ln32x<ln(2ϵ11)ln32x>ln(2ϵ11)32x>2ϵ1132x+1>2ϵ121+32x<ϵ2×3x3x+3x<ϵ2×3x+3x3x3x+3x<ϵ3x3x+3x+3x3x+3x<ϵ3x3x3x+3x+1<ϵ⇒∣3x3x3x+3x+1∣<∣ϵ∣=ϵϵ>0∴∣3x3x3x+3x(1)∣<ϵwheneverx<δ=ln(2ϵ11)2ln3.Soindeedlimx3x3x3x+3x=1.
Commented by sanusihammed last updated on 24/May/16
Thanks
Thanks
Commented by sanusihammed last updated on 24/May/16
i really appreciate
ireallyappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *