Menu Close

Show-that-n-1-n-n-2-3-e-




Question Number 7771 by FilupSmith last updated on 14/Sep/16
Show that:  Σ_(n=1) ^∞ (n/((n+2)!))=3−e
Showthat:n=1n(n+2)!=3e
Commented by FilupSmith last updated on 14/Sep/16
Amazing!
Amazing!
Commented by sou1618 last updated on 14/Sep/16
S=Σ_(n=1) ^∞ (n/((n+2)!))    (1/((n+1)!))−(1/((n+2)!))=((n+1)/((n+2)!))  S=Σ_(n=1) ^∞ ((1/((n+1)!))−(2/((n+2)!)))    g(x)=e^x   g(x)=Σ_(i=0) ^∞ ((g^((i)) (0))/(i!))x^i   g(1)=e=Σ_(i=0) ^∞ (1/(i!))    S=Σ_(n=0) ^∞ (1/((n+2)!))−Σ_(n=0) ^∞ (2/((n+3)!))  S={(Σ_(n=0) ^∞ (1/(n!)))−((1/(0!))+(1/(1!)))}−2{(Σ_(n=0) ^∞ (1/(n!)))−((1/(0!))+(1/(1!))+(1/(2!)))}  0!=1  S=(e−2)−2(e−(5/2))  S=3−e
S=n=1n(n+2)!1(n+1)!1(n+2)!=n+1(n+2)!S=n=1(1(n+1)!2(n+2)!)g(x)=exg(x)=i=0g(i)(0)i!xig(1)=e=i=01i!S=n=01(n+2)!n=02(n+3)!S={(n=01n!)(10!+11!)}2{(n=01n!)(10!+11!+12!)}0!=1S=(e2)2(e52)S=3e

Leave a Reply

Your email address will not be published. Required fields are marked *