Menu Close

show-that-n-N-sin-n-x-cos-n-x-1-and-cosh-n-x-sinh-n-x-1-Hint-use-Induction-method-




Question Number 67664 by Rio Michael last updated on 29/Aug/19
show that  ∃ n ∈ N^(+ )  :  sin^n x + cos^n x = 1 and  cosh^n x − sinh^n x = 1.    Hint: use Induction method.
$${show}\:{that}\:\:\exists\:{n}\:\in\:{N}^{+\:} \::\:\:{sin}^{{n}} {x}\:+\:{cos}^{{n}} {x}\:=\:\mathrm{1}\:{and}\:\:{cosh}^{{n}} {x}\:−\:{sinh}^{{n}} {x}\:=\:\mathrm{1}. \\ $$$$ \\ $$$${Hint}:\:{use}\:{Induction}\:{method}. \\ $$$$ \\ $$
Commented by Rasheed.Sindhi last updated on 30/Aug/19
2∈N⇒sin^2  x+cos^2 x=1
$$\mathrm{2}\in\mathbb{N}\Rightarrow\mathrm{sin}^{\mathrm{2}} \:{x}+\mathrm{cos}\:^{\mathrm{2}} {x}=\mathrm{1} \\ $$
Commented by Rio Michael last updated on 30/Aug/19
thanks but sir do we have any better way to  prove?
$${thanks}\:{but}\:{sir}\:{do}\:{we}\:{have}\:{any}\:{better}\:{way}\:{to} \\ $$$${prove}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *