Menu Close

Show-that-of-all-rectangles-inscribed-in-a-given-circle-the-square-has-a-maximum-area-




Question Number 6136 by sanusihammed last updated on 15/Jun/16
Show that of all rectangles inscribed in a given circle   the square has a maximum area.
$${Show}\:{that}\:{of}\:{all}\:{rectangles}\:{inscribed}\:{in}\:{a}\:{given}\:{circle}\: \\ $$$${the}\:{square}\:{has}\:{a}\:{maximum}\:{area}. \\ $$
Answered by Rasheed Soomro last updated on 15/Jun/16
All the rectangles inscribed in same circle  have equal diagonals and vice versa.  Let the measure of diagonal  is D  If a and b are dimentions of rectangle                    D=(√(a^2 +b^2 ))  If s is measure  of the side of square                    D=(√(s^2 +s^2 ))=(√2) s                (√(a^2 +b^2 ))=(√2) s                   s=(√((a^2 +b^2 )/2))     Area of square=s^2 =((a^2 +b^2 )/2)     Area of rectangle=ab  Now we have to prove that           Area of square>Area of rectangle             ((a^2 +b^2 )/2)>ab      ∀a,b>0 ∧ a≠b  There is a proved relation between arithmatic  mean,geometric mean and harmonic mean  which will help us to prove the above result.  If A, G, H are A.M. ,positive G.M. and  H.M.  between any two positive and unequal  numbers a  and  b  then                      A>G>H                ((a+b)/2)>ab>((2ab)/(a+b))                ((a+b)/2)>((2ab)/(a+b))                  (( (a+b)^2 )/2)>2ab                  (( a^2 +2ab+b^2 )/2)>2ab                    (a^2 /2)+ab+(b^2 /2)>2ab                   ((a^2 +b^2 )/2)>ab          Area of square_() >Area of rectangle  provided that they have same diagonals.I-E  they are inscribed in same circle
$${All}\:{the}\:{rectangles}\:{inscribed}\:{in}\:{same}\:{circle} \\ $$$${have}\:{equal}\:{diagonals}\:{and}\:{vice}\:{versa}. \\ $$$${Let}\:{the}\:{measure}\:{of}\:{diagonal}\:\:{is}\:{D} \\ $$$${If}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{are}\:{dimentions}\:{of}\:{rectangle} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{D}=\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} } \\ $$$${If}\:\boldsymbol{{s}}\:{is}\:{measure}\:\:{of}\:{the}\:{side}\:{of}\:{square} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{D}=\sqrt{\boldsymbol{{s}}^{\mathrm{2}} +\boldsymbol{{s}}^{\mathrm{2}} }=\sqrt{\mathrm{2}}\:\boldsymbol{{s}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }=\sqrt{\mathrm{2}}\:\boldsymbol{{s}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{s}}=\sqrt{\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\:\:\:{Area}\:{of}\:{square}=\boldsymbol{{s}}^{\mathrm{2}} =\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:{Area}\:{of}\:{rectangle}=\boldsymbol{{ab}} \\ $$$${Now}\:{we}\:{have}\:{to}\:{prove}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:{Area}\:{of}\:{square}>{Area}\:{of}\:{rectangle} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\boldsymbol{{ab}}\:\:\:\:\:\:\forall\boldsymbol{{a}},\boldsymbol{{b}}>\mathrm{0}\:\wedge\:\boldsymbol{{a}}\neq\boldsymbol{{b}} \\ $$$${There}\:{is}\:{a}\:{proved}\:{relation}\:{between}\:{arithmatic} \\ $$$${mean},{geometric}\:{mean}\:{and}\:{harmonic}\:{mean} \\ $$$${which}\:{will}\:{help}\:{us}\:{to}\:{prove}\:{the}\:{above}\:{result}. \\ $$$${If}\:{A},\:{G},\:{H}\:{are}\:{A}.{M}.\:,{positive}\:{G}.{M}.\:{and} \\ $$$${H}.{M}.\:\:{between}\:{any}\:{two}\:{positive}\:{and}\:{unequal} \\ $$$${numbers}\:\boldsymbol{{a}}\:\:{and}\:\:\boldsymbol{{b}}\:\:{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A}>{G}>{H} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\mathrm{2}}>\boldsymbol{{ab}}>\frac{\mathrm{2}\boldsymbol{{ab}}}{\boldsymbol{{a}}+\boldsymbol{{b}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\mathrm{2}}>\frac{\mathrm{2}\boldsymbol{{ab}}}{\boldsymbol{{a}}+\boldsymbol{{b}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\:\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }{\mathrm{2}}>\mathrm{2}\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\:\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{ab}}+\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\mathrm{2}\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\mathrm{2}}+\boldsymbol{{ab}}+\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\mathrm{2}\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\underset{} {{Area}\:{of}\:{square}}>{Area}\:{of}\:{rectangle} \\ $$$${provided}\:{that}\:{they}\:{have}\:{same}\:{diagonals}.{I}-{E} \\ $$$${they}\:{are}\:{inscribed}\:{in}\:{same}\:{circle} \\ $$$$ \\ $$
Answered by FilupSmith last updated on 15/Jun/16
An easy solution using integrals     Rectangle of height y, length x  has area:  A_r =∫_0 ^( x) y du = yx  Square of sides x:  A_s =∫_0 ^( x) x du = x^2     yx<x^2  if y<x  therefore A_s >A_r  for all y<x    ∴square has greatest area
$$\mathrm{An}\:\mathrm{easy}\:\mathrm{solution}\:\mathrm{using}\:\mathrm{integrals} \\ $$$$\: \\ $$$$\mathrm{Rectangle}\:\mathrm{of}\:\mathrm{height}\:{y},\:\mathrm{length}\:{x} \\ $$$$\mathrm{has}\:\mathrm{area}: \\ $$$${A}_{{r}} =\int_{\mathrm{0}} ^{\:{x}} {y}\:{du}\:=\:{yx} \\ $$$$\mathrm{Square}\:\mathrm{of}\:\mathrm{sides}\:{x}: \\ $$$${A}_{{s}} =\int_{\mathrm{0}} ^{\:{x}} {x}\:{du}\:=\:{x}^{\mathrm{2}} \\ $$$$ \\ $$$${yx}<{x}^{\mathrm{2}} \:\mathrm{if}\:{y}<{x} \\ $$$$\mathrm{therefore}\:{A}_{{s}} >{A}_{{r}} \:\mathrm{for}\:\mathrm{all}\:{y}<{x} \\ $$$$ \\ $$$$\therefore{square}\:{has}\:{greatest}\:{area} \\ $$
Commented by FilupSmith last updated on 15/Jun/16
oh, i didnt read the part about the cirlce  sorry, but i misread the question
$$\mathrm{oh},\:\mathrm{i}\:\mathrm{didnt}\:\mathrm{read}\:\mathrm{the}\:\mathrm{part}\:\mathrm{about}\:\mathrm{the}\:\mathrm{cirlce} \\ $$$$\mathrm{sorry},\:\mathrm{but}\:\mathrm{i}\:\mathrm{misread}\:\mathrm{the}\:\mathrm{question} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *