Menu Close

Show-that-r-1-n-e-rx-e-x-e-nx-1-e-x-1-if-e-rx-cos-irx-isin-irx-and-x-0-Do-not-treat-as-a-GP-to-directly-obtain-the-result-




Question Number 1453 by 112358 last updated on 06/Aug/15
Show that                     Σ_(r=1) ^n e^(rx) =((e^x (e^(nx) −1))/(e^x −1))       (∗)  if   e^(rx) =cos(irx)−isin(irx) and x≠0 .  [Do not treat (∗) as a GP to  directly obtain the result.]
Showthatnr=1erx=ex(enx1)ex1()iferx=cos(irx)isin(irx)andx0.[Donottreat()asaGPtodirectlyobtaintheresult.]
Answered by 123456 last updated on 13/Aug/15
S_n =Σ_(r=1) ^n e^(rx) ,n∈N^∗   e^x S_n =e^x Σ_(r=1) ^n e^(rx) =Σ_(r=1) ^n e^x e^(rx)            =Σ_(r=1) ^n e^((r+1)x) =Σ_(p=2) ^(n+1) e^(px) =Σ_(r=2) ^(n+1) e^(rx)   (p=r+1,r=1⇒p=2,r=n⇒p=n+1)  e^x S_n −S_n =Σ_(r=2) ^(n+1) e^(rx) −Σ_(r=1) ^n e^(rx)   (e^x −1)S_n =e^((n+1)x) +Σ_(r=2) ^n e^(rx) −Σ_(r=2) ^n e^(rx) −e^x   S_n =((e^((n+1)x) −e^x )/(e^x −1))=((e^x (e^(nx) −1))/(e^x −1)),e^x ≠1  e^x =1  S_n =Σ_(r=1) ^n 1=n
Sn=nr=1erx,nNexSn=exnr=1erx=nr=1exerx=nr=1e(r+1)x=n+1p=2epx=n+1r=2erx(p=r+1,r=1p=2,r=np=n+1)exSnSn=n+1r=2erxnr=1erx(ex1)Sn=e(n+1)x+nr=2erxnr=2erxexSn=e(n+1)xexex1=ex(enx1)ex1,ex1ex=1Sn=nr=11=n
Commented by 112358 last updated on 06/Aug/15
I appreciate your approach.
Iappreciateyourapproach.
Commented by Rasheed Ahmad last updated on 13/Aug/15
Σ_(r=1) ^n e^((r+1)x) =Σ_(r=2) ^(n+1) e^(rx)        (How? pl explain, I am asking                                           for learning. Question should not be   treated as an objection.)
nr=1e(r+1)x=n+1r=2erx(\boldsymbolHow?\boldsymbolpl\boldsymbolexplain,\boldsymbolI\boldsymbolam\boldsymbolasking\boldsymbolfor\boldsymbollearning.\boldsymbolQuestion\boldsymbolshould\boldsymbolnot\boldsymbolbe\boldsymboltreated\boldsymbolas\boldsymbolan\boldsymbolobjection.)
Commented by 112358 last updated on 13/Aug/15
Σ_(r=1) ^n e^((r+1)x) =e^(2x) +e^(3x) +...+e^((n+1)x)    (∗)  (∗) is equal to Σ_(r=2) ^(n+1) e^(rx)  since you  acquire the same pattern of powers  of e as r goes up to n if you denote (∗) by Σ_(r=2) ^(n+1) e^(rx) .  Σ_(r=2) ^(n+1) e^(rx) =e^(2x) +e^(3x) +...+e^((n+1)x) =Σ_(r=1) ^n e^((r+1)x)   I had hoped that someone would  have tried the more lengthy route  which I had found as an alternative  way to finding Σ_(r=1) ^n e^(rx) .
nr=1e(r+1)x=e2x+e3x++e(n+1)x()()isequalton+1r=2erxsinceyouacquirethesamepatternofpowersofeasrgoesuptonifyoudenote()byn+1r=2erx.n+1r=2erx=e2x+e3x++e(n+1)x=nr=1e(r+1)xIhadhopedthatsomeonewouldhavetriedthemorelengthyroutewhichIhadfoundasanalternativewaytofindingnr=1erx.
Commented by Rasheed Ahmad last updated on 13/Aug/15
THANKS For explaining!  Your approach is realy appreciable!
\boldsymbolTHANKS\boldsymbolFor\boldsymbolexplaining!Y\boldsymbolour\boldsymbolapproach\boldsymbolis\boldsymbolrealy\boldsymbolappreciable!
Commented by 123456 last updated on 13/Aug/15
L=lim_(x→0) ((e^((n+1)x) −e^x )/(e^x −1))=lim_(x→0) ((e^x (e^(nx) −1))/(e^x −1))  L=lim_(x→0)  e^x lim_(x→0) ((e^(nx) −1)/(e^x −1))=lim_(x→0) ((e^(nx) −1)/(e^x −1))  lim_(x→0)  ((e^x −1)/x)=1  L=lim_(x→0) ((e^(nx) −1)/(e^x −1))=lim_(x→0) ((((nx)/(nx))(e^(nx) −1))/((x/x)(e^x −1)))  L=lim_(x→0) ((nx((e^(nx) −1)/(nx)))/(x((e^x −1)/x)))=nlim_(x→0) (((e^(nx) −1)/(nx))/((e^x −1)/x))  L=n((lim_(x→0) ((e^(nx) −1)/(nx)))/(lim_(x→0) ((e^x −1)/x)))(y=nx,x→0≡y→0)  L=nlim_(y→0) ((e^y −1)/y)=n
L=limx0e(n+1)xexex1=limx0ex(enx1)ex1L=limx0exlimx0enx1ex1=limx0enx1ex1limx0ex1x=1L=limx0enx1ex1=limx0nxnx(enx1)xx(ex1)L=limx0nxenx1nxxex1x=nlimx0enx1nxex1xL=nlimx0enx1nxlimx0ex1x(y=nx,x0y0)L=nlimy0ey1y=n
Commented by 112358 last updated on 13/Aug/15
L=lim_(x→0) S_n =lim_(x→0) ((e^((n+1)x) −e^x )/(e^x −1))  By L′Hopital′s rule  L=lim_(x→0) (((d/dx)(e^((n+1)x) −e^x ))/((d/dx)(e^x −1)))=lim_(x→0) (((n+1)e^((n+1)x) −e^x )/e^x )  L=(((n+1)e^0 −e^0 )/e^0 )=n+1−1=n .  ∴lim_(x→0) S_n =n    which supports the result  S_n =n  when x=0 for S_n =Σ_(r=1) ^n e^(rx)  .
L=limx0Sn=limx0e(n+1)xexex1ByLHopitalsruleL=limx0ddx(e(n+1)xex)ddx(ex1)=limx0(n+1)e(n+1)xexexL=(n+1)e0e0e0=n+11=n.limx0Sn=nwhichsupportstheresultSn=nwhenx=0forSn=nr=1erx.
Commented by 112358 last updated on 13/Aug/15
I see. Good alternative approach.  How may one show that   lim_(x→0) ((e^x −1)/x)=1 ?
Isee.Goodalternativeapproach.Howmayoneshowthatlimx0ex1x=1?
Commented by 123456 last updated on 14/Aug/15
F(a)=lim_(x→0) ((a^x −1)/x),a>0,a≠1  x=log_a (t+1)  x→0≡t→0  F(a)=lim_(t→0) ((a^(log_a (t+1)) −1)/(log_a (t+1)))  F(a)=lim_(t→0) (t/(log_a (t+1)))  [log_a (t+1)=((ln (t+1))/(ln a))]  F(a)=lim_(t→0) ((tln a)/(ln (t+1)))=lim_(t→0) ((ln a)/((1/t)ln(1+t)))  F(a)=((ln a)/(lim_(t→0)  ln(1+t)^(1/t)  ))=((ln a)/(ln lim_(t→0) (1+t)^(1/t) ))  fundamental limit:lim_(t→0) (1+t)^(1/t) =e  F(a)=((ln a)/(ln e))=ln a  a=e  F(e)=1
F(a)=limx0ax1x,a>0,a1x=loga(t+1)x0t0F(a)=limt0aloga(t+1)1loga(t+1)F(a)=limt0tloga(t+1)[loga(t+1)=ln(t+1)lna]F(a)=limt0tlnaln(t+1)=limt0lna1tln(1+t)F(a)=lnalimt0ln(1+t)1/t=lnalnlimt0(1+t)1/tfundamentallimit:limt0(1+t)1/t=eF(a)=lnalne=lnaa=eF(e)=1
Commented by 112358 last updated on 14/Aug/15
Awesome. Thanks for sharing   that proof.
Awesome.Thanksforsharingthatproof.

Leave a Reply

Your email address will not be published. Required fields are marked *