Menu Close

show-that-sec-2-cosec-cosec-sin-




Question Number 10743 by okhema last updated on 24/Feb/17
show that sec^2 θ=((cosec θ)/(cosec θ−sin ))
showthatsec2θ=cosecθcosecθsin
Commented by ridwan balatif last updated on 24/Feb/17
((cosecθ)/(cosecθ−sinθ))=((1/(sinθ))/((1/(sinθ))−sinθ))                                  =((1/(sinθ))/((1−sin^2 θ)/(sinθ)))                                 =(((1/(sinθ))/(cos^2 θ))/(sinθ))                                 =(1/(sinθ))×((sinθ)/(cos^2 θ))                                 =(1/(cos^2 θ))  ((cosecθ)/(cosecθ−sinθ))=sec^2 θ  remember!  secθ=(1/(cosθ))  cosecθ=(1/(sinθ))
cosecθcosecθsinθ=1sinθ1sinθsinθ=1sinθ1sin2θsinθ=1sinθcos2θsinθ=1sinθ×sinθcos2θ=1cos2θcosecθcosecθsinθ=sec2θremember!secθ=1cosθcosecθ=1sinθ
Commented by okhema last updated on 24/Feb/17
yes thats what i got but wasnt sure if its correct  cause i only know sec^2 θ=1+tan^2 θ but thanks anyways
yesthatswhatigotbutwasntsureifitscorrectcauseionlyknowsec2θ=1+tan2θbutthanksanyways
Answered by ridwan balatif last updated on 24/Feb/17
sec^2 θ=(1/(cos^2 θ))              =((1/(1−sin^2 θ)))(((cosecθ)/(cosecθ)))              =((cosecθ)/(cosecθ−cosecθ×sinθ×sinθ))              =((cosecθ)/(cosecθ−(1/(sinθ))×sinθ×sinθ))  sec^2 θ=((cosecθ)/(cosecθ−sinθ))  PROVED !!!!
sec2θ=1cos2θ=(11sin2θ)(cosecθcosecθ)=cosecθcosecθcosecθ×sinθ×sinθ=cosecθcosecθ1sinθ×sinθ×sinθsec2θ=cosecθcosecθsinθPROVED!!!!
Commented by okhema last updated on 24/Feb/17
why couldnt you start from the right...cause thats what i do by doing the right hand side but i end up with (1/(cos^2 θ ))
whycouldntyoustartfromtherightcausethatswhatidobydoingtherighthandsidebutiendupwith1cos2θ

Leave a Reply

Your email address will not be published. Required fields are marked *