Menu Close

show-that-tan-1-1-x-2-1-x-1-2-tan-1-x-




Question Number 1157 by navajyoti.tamuli.tamuli@gmail. last updated on 06/Jul/15
show that  tan^(−1) ((((√(1+x^2 ))−1)/x))=(1/2)tan^(−1) x
showthattan1(1+x21x)=12tan1x
Answered by prakash jain last updated on 11/Jul/15
Let y=tan^(−1) x⇒x=tany  1+x^2 =sec^2 y  (((√(1+x^2 ))−1)/x)=(((√(sec^2 y))−1)/(tany))=((secy−1)/(tany))=((1−cosy)/(siny))              =((1−(1−2sin^2 (y/2)))/(2sin(y/2)cos(y/2)))=tan(y/2)  L.H.S=tan^(−1) tan(y/2)=(y/2)  R.H.S=(1/2)tan^(−1) x=(y/2)  ∴L.H.S=R.H.S
Lety=tan1xx=tany1+x2=sec2y1+x21x=sec2y1tany=secy1tany=1cosysiny=1(12sin2y2)2siny2cosy2=tany2L.H.S=tan1tany2=y2R.H.S=12tan1x=y2L.H.S=R.H.S

Leave a Reply

Your email address will not be published. Required fields are marked *