Menu Close

Show-that-the-curve-y-ln-5-7x-8-x-has-no-stationary-point-for-all-real-values-of-x-




Question Number 8244 by lepan last updated on 04/Oct/16
Show that the curve y=ln(((5−7x)/(8+x))) has  no stationary point for all real values  of x.
Showthatthecurvey=ln(57x8+x)hasnostationarypointforallrealvaluesofx.
Answered by 123456 last updated on 06/Oct/16
y=ln ((5−7x)/(8+x))  (dy/dx)=(d/dx)ln ((5−7x)/(8+x))     u=((5−7x)/(8+x))  =((dln u)/dx)  =((dln u)/du)∙(du/dx)  =(1/u)∙(du/dx)  =((8+x)/(5−7x))∙(d/dx) ((5−7x)/(8+x))          { ((v=5−7x)),((w=8+x)) :}  =((8+x)/(5−7x))∙(d/dx) (v/w)                   (d/dx) (u/v)=(d/dx)(u∙(1/v))=(du/dx)∙(1/v)+u∙(d/dx) (1/v)=(du/dx)∙(1/v)−u∙((dv/x)/v^2 )=((u′v−uv′)/v^2 )  =((8+x)/(5−7x))∙(((dv/dx)∙w−v∙(dw/dx))/w^2 )  =((8+x)/(5−7x))∙((((d(5−7x))/dx)∙(8+x)−(5−7x)∙((d(8+x))/dx))/((8+x)^2 ))  =(1/(5−7x))∙((−7∙(8+x)−(5−7x)∙1)/(8+x))  =((−7∙8−7x−5+7x)/((5−7x)(8+x)))  =−((61)/((5−7x)(8+x)))
y=ln57x8+xdydx=ddxln57x8+xu=57x8+x=dlnudx=dlnudududx=1ududx=8+x57xddx57x8+x{v=57xw=8+x=8+x57xddxvwddxuv=ddx(u1v)=dudx1v+uddx1v=dudx1vudv/xv2=uvuvv2=8+x57xdvdxwvdwdxw2=8+x57xd(57x)dx(8+x)(57x)d(8+x)dx(8+x)2=157x7(8+x)(57x)18+x=787x5+7x(57x)(8+x)=61(57x)(8+x)

Leave a Reply

Your email address will not be published. Required fields are marked *