Menu Close

show-that-the-ellipse-with-e-5-3-focus-0-2-and-directrix-x-4-5-3-has-the-equation-x-5-2-9-y-2-2-4-1-




Question Number 9163 by tawakalitu last updated on 21/Nov/16
show that the ellipse with e = ((√5)/3),   focus (0, 2) and directrix x = −((4(√5))/3)  has the equation : (((x − (√5))^2 )/9) + (((y − 2)^2 )/4) = 1
showthattheellipsewithe=53,focus(0,2)anddirectrixx=453hastheequation:(x5)29+(y2)24=1
Commented by sandy_suhendra last updated on 22/Nov/16
equation of an ellipse is  (((x−h)^2 )/a^2 ) + (((y−k)^2 )/b^2 ) = 1  where   a=major axis  b=minor axis  (h,k) is the centre of ellipse  linear eccentricity=c=(√(a^2 −b^2 ))  eccentricity=e=(c/a)  directrix ⇒ x=h ± (a/e)  focal points : (h±c , k)    e = ((√5)/3) ⇒ ((√5)/3) = (c/a) ⇒ c=((a(√5))/3)  focus : (0,2) ⇒ h−c=0 ⇒h=c=((a(√5))/3) (h+c is imposible = 0)                                  k=2    directrix ⇒ x=−((4(√5))/5) ( I think that is 5 not 3 )                            −((4(√5))/5)=h−(a/e)                            −((4(√5))/5)=((a(√5))/3)−(a/( (√5)/3))                            −((4(√5))/5)=((a(√5))/3)−((3a(√5))/5)  (multiplied by ((15)/( (√5))))                             −12=5a−9a                                                            a=3 ⇒ c=h=(√5)                                               c^2 =a^2 −b^2   5=9−b^2   b=2  substitute : a=3, b=2, h=(√5), k=2  to the equation of ellipse, so we have :  (((x−(√5))^2 )/9)+(((y−2)^2 )/4)=1
equationofanellipseis(xh)2a2+(yk)2b2=1wherea=majoraxisb=minoraxis(h,k)isthecentreofellipselineareccentricity=c=a2b2eccentricity=e=cadirectrixx=h±aefocalpoints:(h±c,k)e=5353=cac=a53focus:(0,2)hc=0h=c=a53(h+cisimposible=0)k=2directrixx=455(Ithinkthatis5not3)455=hae455=a53a5/3455=a533a55(multipliedby155)12=5a9aa=3c=h=5c2=a2b25=9b2b=2substitute:a=3,b=2,h=5,k=2totheequationofellipse,sowehave:(x5)29+(y2)24=1
Commented by tawakalitu last updated on 22/Nov/16
Wow, this is great. i really appreciate sir.  God bless you.
Wow,thisisgreat.ireallyappreciatesir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *