Menu Close

Show-that-the-graph-of-r-sin-t-i-2cos-t-j-3-sin-t-k-is-a-circle-




Question Number 68836 by Joel122 last updated on 16/Sep/19
Show that the graph of  r = (sin t)i + (2cos t)j + ((√3)sin t)k  is a circle
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of} \\ $$$$\boldsymbol{{r}}\:=\:\left(\mathrm{sin}\:{t}\right)\boldsymbol{{i}}\:+\:\left(\mathrm{2cos}\:{t}\right)\boldsymbol{{j}}\:+\:\left(\sqrt{\mathrm{3}}\mathrm{sin}\:{t}\right)\boldsymbol{{k}} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{circle} \\ $$
Answered by Tanmay chaudhury last updated on 16/Sep/19
ix+jy+kz=(sint)i+(2cost)j+((√3) sint)k  x=sint  y=2cost  z=(√3) sint  x^2 +y^2 +z^2 =sin^2 t+4cos^2 t+3sin^2 t  x^2 +y^2 +z^2 =4→eqn of sphere
$${ix}+{jy}+{kz}=\left({sint}\right){i}+\left(\mathrm{2}{cost}\right){j}+\left(\sqrt{\mathrm{3}}\:{sint}\right){k} \\ $$$${x}={sint} \\ $$$${y}=\mathrm{2}{cost} \\ $$$${z}=\sqrt{\mathrm{3}}\:{sint} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={sin}^{\mathrm{2}} {t}+\mathrm{4}{cos}^{\mathrm{2}} {t}+\mathrm{3}{sin}^{\mathrm{2}} {t} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{4}\rightarrow{eqn}\:{of}\:{sphere} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *