Menu Close

show-that-the-plane-x-2y-3z-d-0-is-perpendiculr-to-each-of-the-plane-is-2x-5y-4z-1-0-and-4x-7y-3z-2-0-




Question Number 8150 by trapti rathaur@ gmail.com last updated on 02/Oct/16
show that the plane   x+2y−3z+d=0  is perpendiculr to each of  the plane is   2x+5y+4z+1=0  and   4x+7y+3z+2=0 .
showthattheplanex+2y3z+d=0isperpendiculrtoeachoftheplaneis2x+5y+4z+1=0and4x+7y+3z+2=0.
Commented by 123456 last updated on 03/Oct/16
α:x+2y−3z+d=0  β:2x+5y+4z+1=0  γ:4x+7y+3z+2=0  lets r^→ ,s^→ ,t^→  be the normal vector of   α,β,γ we have  r^→ =(1,2,−3)  s^→ =(2,5,4)  t^→ =(4,7,3)  if two plan are perp, their normal vector  are perp too  two vector are perp if their dot product  equal to 0  r^→ ∙s^→ =(1,2,−3)∙(2,5,4)  =1×2+2×5−3×4  =2+10−12  =12−12  =0  r^→ ∙t^→ =(1,2,−3)∙(4,7,3)  =1×4+2×7−3×3  =4+14−9  =18−9  =9≠0  s^→ ∙t^→ =(2,5,4)∙(4,7,3)  =2×4+5×7+4×3  =8+35+12  =55≠0
α:x+2y3z+d=0β:2x+5y+4z+1=0γ:4x+7y+3z+2=0letsr,s,tbethenormalvectorofα,β,γwehaver=(1,2,3)s=(2,5,4)t=(4,7,3)iftwoplanareperp,theirnormalvectorareperptootwovectorareperpiftheirdotproductequalto0rs=(1,2,3)(2,5,4)=1×2+2×53×4=2+1012=1212=0rt=(1,2,3)(4,7,3)=1×4+2×73×3=4+149=189=90st=(2,5,4)(4,7,3)=2×4+5×7+4×3=8+35+12=550

Leave a Reply

Your email address will not be published. Required fields are marked *