Menu Close

Show-that-x-0-2-tanx-sin4x-0-




Question Number 7055 by Tawakalitu. last updated on 08/Aug/16
Show that ∀ x ∈ [ 0, (Π/2) ] , tanx + sin4x ≥ 0
Showthatx[0,Π2],tanx+sin4x0
Commented by Yozzii last updated on 08/Aug/16
If 0≤x≤(π/2)⇒0≤4x≤2π  For −1≤sin4x<0⇒π<4x≤((3π)/2) or ((3π)/2)≤4x<2π   ⇒(π/4)<x≤((3π)/8) or ((3π)/8)≤x<(π/2)  ⇒1<tanx≤tan((3π)/8) or tan((3π)/8)≤tanx<+∞  ⇒tanx>1 ∀x∈((π/4),(π/2))  ∴tanx+sin4x>1+sin4x≥1+(−1)=0  ⇒tanx+sin4x>0 if x∈((π/4),(π/2)).  If 0≤sin4x≤1⇒ 0≤4x≤(π/2) or (π/2)≤4x≤π  ⇒0≤x≤(π/8) or (π/8)≤x≤(π/4)  ⇒0≤tanx≤tan(π/8) or tan(π/8)≤tanx≤1  ⇒tanx≥0⇒tanx+sin4x≥sin4x≥0  ⇒tanx+sin4x≥0  ∀x∈[0,π/4]  ∴ ∀x∈[0,π/2], tanx+sin4x≥0.
If0xπ204x2πFor1sin4x<0π<4x3π2or3π24x<2ππ4<x3π8or3π8x<π21<tanxtan3π8ortan3π8tanx<+tanx>1x(π4,π2)tanx+sin4x>1+sin4x1+(1)=0tanx+sin4x>0ifx(π4,π2).If0sin4x104xπ2orπ24xπ0xπ8orπ8xπ40tanxtanπ8ortanπ8tanx1tanx0tanx+sin4xsin4x0tanx+sin4x0x[0,π/4]x[0,π/2],tanx+sin4x0.
Commented by Tawakalitu. last updated on 08/Aug/16
Thank you so much sir. i really appreiate.
Thankyousomuchsir.ireallyappreiate.
Answered by Yozzii last updated on 08/Aug/16
Check comments for an answer.
Checkcommentsforananswer.

Leave a Reply

Your email address will not be published. Required fields are marked *