Menu Close

Show-that-x-2-a-2-x-2-a-2-gt-x-a-x-a-




Question Number 4809 by 314159 last updated on 15/Mar/16
Show that ((x^2 +a^2 )/(x^2 −a^2 )) > ((x+a)/(x−a)).
Showthatx2+a2x2a2>x+axa.
Answered by Yozzii last updated on 15/Mar/16
Let φ=((x^2 +a^2 )/(x^2 −a^2 ))−((x+a)/(x−a)). Since x^2 −a^2 =(x−a)(x+a)  ⇒φ=(1/((x−a)))(((x^2 +a^2 )/(x+a))−x+a)  φ=(1/(x−a))(((x^2 +a^2 −x^2 −2ax−a^2 )/(x+a)))  φ=((2ax)/(a^2 −x^2 ))  Let x=1 and a=−2.⇒2ax=2×1×(−1)<0  a^2 −x^2 =4−1=3>0. ∴ φ<0⇒∃(x,a)∈R^2   such that ((x^2 +a^2 )/(x^2 −a^2 ))≯((x+a)/(x−a)).   ((1+4)/(1−4))=(5/(−3))≯((1−2)/(1−(−2)))=((−1)/3)   ((−5)/3)<((−1)/3)
Letϕ=x2+a2x2a2x+axa.Sincex2a2=(xa)(x+a)ϕ=1(xa)(x2+a2x+ax+a)ϕ=1xa(x2+a2x22axa2x+a)ϕ=2axa2x2Letx=1anda=2.2ax=2×1×(1)<0a2x2=41=3>0.ϕ<0(x,a)R2suchthatx2+a2x2a2x+axa.1+414=53121(2)=1353<13

Leave a Reply

Your email address will not be published. Required fields are marked *