Menu Close

Show-that-x-R-the-sequence-f-n-0-defined-by-f-0-cosx-f-1-sin-cosx-and-f-n-sin-cos-f-n-2-if-n-3-is-odd-cos-sin-f-n-2-if-n-2-is-even-converges-to-a-limit-l-0-6-0-7




Question Number 6247 by Yozzii last updated on 20/Jun/16
Show that, ∀x∈R, the sequence {f(n)}_0 ^∞   defined by f(0)=cosx, f(1)=sin(cosx) and  f(n)= { ((sin(cos(f(n−2)))  if n≥3 is odd)),((cos(sin(f(n−2)))  if n≥2 is even,)) :}  converges to a limit l∈(0.6,0.7).  If you can, determine the exact value  of l.
Showthat,xR,thesequence{f(n)}0definedbyf(0)=cosx,f(1)=sin(cosx)andf(n)={sin(cos(f(n2)))ifn3isoddcos(sin(f(n2)))ifn2iseven,convergestoalimitl(0.6,0.7).Ifyoucan,determinetheexactvalueofl.
Commented by Yozzii last updated on 20/Jun/16
f(0)=cosx  f(1)=sin(cosx)  f(2)=cos(sin(cosx))  f(3)=sin(cos(sin(cosx)))  f(4)=cos(sin(cos(sin(cosx))))  f(5)=sin(cos(sin(cos(sin(cosx)))))  …  lim_(n→∞) f(n)=?  Graphically, the curves f_n (x) flatten  to the line y≈0.695 for sufficiently  large n. I am yet to figure out how  to show this behaviour formally.
f(0)=cosxf(1)=sin(cosx)f(2)=cos(sin(cosx))f(3)=sin(cos(sin(cosx)))f(4)=cos(sin(cos(sin(cosx))))f(5)=sin(cos(sin(cos(sin(cosx)))))limnf(n)=?Graphically,thecurvesfn(x)flattentotheliney0.695forsufficientlylargen.Iamyettofigureouthowtoshowthisbehaviourformally.
Commented by prakash jain last updated on 20/Jun/16
The value will become constant and take  value u if for some u  sin (cos u)=u  cos (sin u)=u  Then the value will be a constant.  However  sin (cos x)=x⇒x=.695  cos (sin x)=x⇒x=.768  Also for cos (.695)=.768  So the graph should show 2 lines  .695 and .768
Thevaluewillbecomeconstantandtakevalueuifforsomeusin(cosu)=ucos(sinu)=uThenthevaluewillbeaconstant.Howeversin(cosx)=xx=.695cos(sinx)=xx=.768Alsoforcos(.695)=.768Sothegraphshouldshow2lines.695and.768
Commented by Yozzii last updated on 20/Jun/16
The result of having two values of the limit   u from the two recurrence formulae   indicates that no limit exists?
Theresultofhavingtwovaluesofthelimitufromthetworecurrenceformulaeindicatesthatnolimitexists?
Commented by Yozzii last updated on 21/Jun/16
u=sin(cosu)  u=cos(sinu)  ⇒2u=sin(cosu)+cos(sinu)   u turns out to be approximately 0.731  according to this equation.  −−−−−−−−−−−−−−−−−−−−−−−−  sin^(−1) u=cosu  cos^(−1) u=sinu  ⇒(sin^(−1) u)^2 +(cos^(−1) u)^2 =1   (∗)  Wolfram gives complex solutions of u  for (∗).  sin^(−1) u=0.5π−cos^(−1) u  j=cos^(−1) u⇒ (0.5π−j)^2 +j^2 =1  2j^2 −πj+0.25π^2 −1=0  j=((π±(√(π^2 −4(2)((π^2 /4)−1))))/4)  j=((π±(√(−π^2 +8)))/4)=((π±i(√(π^2 −8)))/4)  ∴ u=cos(((π±i(√(π^2 −8)))/4))
u=sin(cosu)u=cos(sinu)2u=sin(cosu)+cos(sinu)uturnsouttobeapproximately0.731accordingtothisequation.sin1u=cosucos1u=sinu(sin1u)2+(cos1u)2=1()Wolframgivescomplexsolutionsofufor().sin1u=0.5πcos1uj=cos1u(0.5πj)2+j2=12j2πj+0.25π21=0j=π±π24(2)(π241)4j=π±π2+84=π±iπ284u=cos(π±iπ284)
Commented by prakash jain last updated on 21/Jun/16
u=sin (cos u)  u=cos (sin u)  Both equation are not simulatenoeus.  u=.695 will statify one equation.
u=sin(cosu)u=cos(sinu)Bothequationarenotsimulatenoeus.u=.695willstatifyoneequation.
Commented by Yozzii last updated on 21/Jun/16
No limit exists then?
Nolimitexiststhen?

Leave a Reply

Your email address will not be published. Required fields are marked *