Question Number 984 by 112358 last updated on 13/May/15
$${Show}\:{that}\:\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{1}}>\mathrm{1}\:{given}\:{that}\:{x}>\frac{\mathrm{1}}{\mathrm{3}}\:. \\ $$
Commented by prakash jain last updated on 13/May/15
$$\mathrm{For}\:{x}=\mathrm{1}\:\mathrm{LHS}=\frac{\mathrm{1}×\mathrm{2}}{\mathrm{2}}=\mathrm{1}\ngtr\mathrm{1} \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{should}\:\mathrm{be} \\ $$$$\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{1}}\geqslant\mathrm{1} \\ $$
Answered by prakash jain last updated on 13/May/15
$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0}\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\geqslant\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{x}−\mathrm{3}{x}+\mathrm{1}\geqslant\mathrm{0} \\ $$$$\Rightarrow{x}\left({x}+\mathrm{1}\right)\geqslant\mathrm{3}{x}−\mathrm{1} \\ $$$${x}>\frac{\mathrm{1}}{\mathrm{3}}\Rightarrow\mathrm{3}{x}−\mathrm{1}>\mathrm{0},\:\mathrm{divide}\:\mathrm{by}\:\mathrm{3}{x}−\mathrm{1} \\ $$$${hencd} \\ $$$$\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{1}}\geqslant\mathrm{1} \\ $$