Menu Close

show-thats-true-e-x-2-pi-




Question Number 8490 by fernandodantas1996 last updated on 14/Oct/16
show thats true:  ∫_(−∞) ^(+∞) e^(−x^2 ) = (√π)
showthatstrue:+ex2=π
Commented by prakash jain last updated on 14/Oct/16
You need to define limits.
Youneedtodefinelimits.
Commented by fernandodantas1996 last updated on 23/Oct/16
Answered by prakash jain last updated on 23/Oct/16
(∫_(−∞) ^∞ e^(−x^2 ) )^2 =∫_(−∞) ^∞ e^(−x^2 ) dx∫_(−∞) ^∞ e^(−y^2 ) dy                           =∫_(−∞) ^∞ ∫_(−∞) ^∞ e^(−(x^2 +y^2 )) dxdy  Convert to polar coordinates  x=rcos θ  y=rsin θ  dxdy=rdrdθ  ∫_(−∞) ^∞ ∫_(−∞) ^∞ e^(−(x^2 +y^2 )) dxdy  =∫_0 ^(2π) ∫_0 ^∞ e^(−r^2 ) rdrdθ  =∫_0 ^(2π) dθ∫_0 ^∞ e^(−r^2 ) rdr  subtitute s=−r^2 ⇒ds=−2rdr  =∫_0 ^(2π) dθ∫_0 ^(−∞) −(1/2)e^s ds  =2π((1/2))(−[e^(−∞) −e^0 ])  =π  I=∫_(−∞) ^∞ e^(−x^2 ) dx  I^2 =π⇒I=∫_(−∞) ^∞ e^(−x^2 ) dx=(√π)
(ex2)2=ex2dxey2dy=e(x2+y2)dxdyConverttopolarcoordinatesx=rcosθy=rsinθdxdy=rdrdθe(x2+y2)dxdy=02π0er2rdrdθ=02πdθ0er2rdrsubtitutes=r2ds=2rdr=02πdθ012esds=2π(12)([ee0])=πI=ex2dxI2=πI=ex2dx=π

Leave a Reply

Your email address will not be published. Required fields are marked *