Menu Close

si-g-ChineseRemainderTheorm-etermine-polynomial-p-x-such-that-p-x-8-mod-x-1-p-x-24-mod-x-3-p-x-6-mod-x-p-x-0-mod-x-2-




Question Number 67697 by Rasheed.Sindhi last updated on 30/Aug/19
⋓si⋒g ChineseRemainderTheorm  ∂etermine polynomial p(x) such that            p(x)≡8(mod x+1)          p(x)≡−24(mod x+3)          p(x)≡6(mod x)          p(x)≡0(mod x+2)
sigChineseRemainderTheormeterminepolynomialp(x)suchthatp(x)8(modx+1)p(x)24(modx+3)p(x)6(modx)p(x)0(modx+2)
Answered by Rasheed.Sindhi last updated on 01/Sep/19
 { ((p(x)≡8(mod x+1))),((p(x)≡−24(mod x+3))),((p(x)≡6(mod x))),((p(x)≡0(mod x+2))) :}  Let m_1 =x+1,m_2 =x+3,m_3 =x,m_4 =x+2  Note that (m_i ,m_j )=1 for ∀ i≠j  (pairwise coprime)  Let M=m_1 m_2 m_3 m_4 =(x+1)(x+3)(x)(x+2)     M_1 =(M/m_1 )=m_2 m_3 m_4 =(x+3)(x)(x+2)     M_2 =(M/m_2 )=m_1 m_3 m_4 =(x+1)(x)(x+2)     M_3 =(M/m_3 )=m_1 m_2 m_4 =(x+1)(x+3)(x+2)     M_4 =(M/m_4 )=m_1 m_2 m_3 =(x+1)(x+3)(x)  Note that (M_i ,m_i )=1  ∴   M_i y≡1(mod m_i )   (x+3)(x)(x+2)H_1 (x)≡1(mod x+1)             (x^3 +5x^2 +6x)H_1 (x)≡1(mod x+1)   Let H_1 (x)=h_1 (a constant)   (((−1)),h_1 ,( 5h_1 ),(   6h_1 ),(     −1)),(,,(−h_1 ),(−4h_1 ),(    −2h_1 )),(,h_1 ,(  4h_1 ),(    2h_1 ),(   −2h_1 −1)) )   −2h_1 −1=0⇒h_1 =−1/2   (x+1)(x)(x+2)H_2 (x)≡1(mod x+3)            (x^3 +3x^2 +2x)H_2 (x)≡1(mod x+3)  If H_2 (x)=h_2 (constant)  h_2 =−1/6 (By similar process)   (x+1)(x+3)(x+2)H_3 (x)≡1(mod x)             (x^3 +6x^2 +11x+6)H_3 (x)≡1(mod x)  If H_3 (x)=h_3 (constant)    (((0)),h_3 ,(6h_3 ),(11h_3 ),(6h_3 −1)),(,,0,0,0),(,h_3 ,(6h_3 ),(11h_3 ),(6h_3 −1)) )  6h_3 −1=0⇒h_3 =1/6   (x+1)(x+3)(x)H_4 (x)≡1(mod x+2)             (x^3 +4x^2 +3x)H_4 (x)≡1(mod x+2)   If H_4 (x)=h_4    (((−2)),h_4 ,(   4h_4 ),(   3h_4 ),(−1)),(,,(−2h4),(−4h_4 ),(  2h_4 )),(,h_4 ,(   2h_4 ),(−h_4 ),(2h_4 −1)) )  2h_4 −1=0⇒h_4 =1/2    x=8(x^3 +5x^2 +6x)(−1/2)              +(−24)(x^3 +3x^2 +2x)(−1/6)                  +6(x^3 +6x^2 +11x+6)(1/6)                        +(0)(x^3 +4x^2 +3x)(1/2)  x=−4x^3 −20x^2 −24x         +4x^3 +12x^2  +  8x         +  x^3 +  6x^2 +11x+6  x=x^3 −2x^2 −5x+6
{p(x)8(modx+1)p(x)24(modx+3)p(x)6(modx)p(x)0(modx+2)Letm1=x+1,m2=x+3,m3=x,m4=x+2Notethat(mi,mj)=1forij(pairwisecoprime)LetM=m1m2m3m4=(x+1)(x+3)(x)(x+2)M1=Mm1=m2m3m4=(x+3)(x)(x+2)M2=Mm2=m1m3m4=(x+1)(x)(x+2)M3=Mm3=m1m2m4=(x+1)(x+3)(x+2)M4=Mm4=m1m2m3=(x+1)(x+3)(x)Notethat(Mi,mi)=1Miy1(modmi)(x+3)(x)(x+2)H1(x)1(modx+1)(x3+5x2+6x)H1(x)1(modx+1)LetH1(x)=h1(aconstant)(1)h15h16h11h14h12h1h14h12h12h11)2h11=0h1=1/2(x+1)(x)(x+2)H2(x)1(modx+3)(x3+3x2+2x)H2(x)1(modx+3)IfH2(x)=h2(constant)h2=1/6(Bysimilarprocess)(x+1)(x+3)(x+2)H3(x)1(modx)(x3+6x2+11x+6)H3(x)1(modx)IfH3(x)=h3(constant)(0)h36h311h36h31000h36h311h36h31)6h31=0h3=1/6(x+1)(x+3)(x)H4(x)1(modx+2)(x3+4x2+3x)H4(x)1(modx+2)IfH4(x)=h4(2)h44h43h412h44h42h4h42h4h42h41)2h41=0h4=1/2x=8(x3+5x2+6x)(1/2)+(24)(x3+3x2+2x)(1/6)+6(x3+6x2+11x+6)(1/6)+(0)(x3+4x2+3x)(1/2)x=4x320x224x+4x3+12x2+8x+x3+6x2+11x+6x=x32x25x+6
Commented by Prithwish sen last updated on 02/Sep/19
excelent.
excelent.
Commented by mr W last updated on 03/Sep/19
nice creation!
nicecreation!
Commented by Rasheed.Sindhi last updated on 04/Sep/19
Thank you both sirs!
Thankyoubothsirs!

Leave a Reply

Your email address will not be published. Required fields are marked *