Menu Close

simplify-A-n-2-i-5-n-2-i-5-n-and-B-n-2-i-5-n-2-i-5-n-




Question Number 65918 by mathmax by abdo last updated on 05/Aug/19
simplify A_n =(2+i(√5))^n  +(2−i(√5))^n   and B_n =(2+i(√5))^n −(2−i(√5))^n
simplifyAn=(2+i5)n+(2i5)nandBn=(2+i5)n(2i5)n
Commented by mathmax by abdo last updated on 06/Aug/19
we have ∣2+i(√5)∣ =(√(2^2  +((√5))^2 ))=(√(4+5))=3 ⇒  2+i(√5)=3((2/3) +i((√5)/3)) =3 e^(iarctan(((√5)/2)))  ⇒(2+i(√5))^n  =3^n  e^(inarctan(((√5)/2)))   and (2−i(√5))^n  =3^n  e^(−inarctan(((√5)/2)))  ⇒  A_n =3^n { e^(inarctan(((√5)/2)))  +e^(−inarctan(((√5)/2))) } =3^n (2cos(n arctan(((√5)/2))))  =2.3^n  cos(n arctan(((√5)/2)))  also   B_n =3^n { e^(inarctan(((√5)/2))) −e^(−inarctan(((√5)/2))) }  =2i 3^n  sin(narctan(((√5)/2)))
wehave2+i5=22+(5)2=4+5=32+i5=3(23+i53)=3eiarctan(52)(2+i5)n=3neinarctan(52)and(2i5)n=3neinarctan(52)An=3n{einarctan(52)+einarctan(52)}=3n(2cos(narctan(52)))=2.3ncos(narctan(52))alsoBn=3n{einarctan(52)einarctan(52)}=2i3nsin(narctan(52))
Answered by mr W last updated on 06/Aug/19
2+i(√5)=3((2/3)+i((√5)/3))=3(cos α+i sin α)  with α=tan^(−1) ((√5)/2)  2−i(√5)=3((2/3)−i((√5)/3))=3(cos α−i sin α)  A_n =3^n (cos nα+i sin nα)+3^n (cos nα−i sin nα)  ⇒A_n =2×3^n cos nα  B_n =3^n (cos nα+i sin nα)−3^n (cos nα−i sin nα)  ⇒B_n =2×3^n sin nα i
2+i5=3(23+i53)=3(cosα+isinα)withα=tan1522i5=3(23i53)=3(cosαisinα)An=3n(cosnα+isinnα)+3n(cosnαisinnα)An=2×3ncosnαBn=3n(cosnα+isinnα)3n(cosnαisinnα)Bn=2×3nsinnαi