Menu Close

simplify-A-n-x-1-ix-n-1-ix-n-x-from-C-




Question Number 142115 by mathmax by abdo last updated on 26/May/21
simplify  A_n (x)=(1+ix)^n +(1−ix)^n    x from C
simplifyAn(x)=(1+ix)n+(1ix)nxfromC
Answered by mathmax by abdo last updated on 27/May/21
let x=re^(iθ)  ⇒1+ix =1+ire^(iθ)  =1+ir(cosθ +isinθ)  =1−rsinθ +ircosθ  and  1−ix =1−ire^(iθ)  =1−ir(cosθ +isinθ)  =1+rsinθ −ir cosθ  ∣1+ix∣=(√((1−rsinθ)^2  +r^2 cos^2 θ))=(√(1−2rsinθ+r^2 )) ⇒  1+ix =(√(1−2rsinθ +r^2 ))e^(iarctan(((rcosθ)/(1−rsinθ))))  ⇒  (1+ix)^n  =(1−2rsinθ +r^2 )^(n/2)  e^(inarctan(((rcosθ)/(1−rsinθ))))   ∣1−ix∣=(√((1+rsinθ)^2  +r^2 cos^2 θ))=(√(1+2rsinθ +r^2 ))  ⇒1−ix =(√(1+2rsinθ +r^2 )) e^(−iarctan(((rcosθ)/(1+rsinθ))))  ⇒  (1−ix)^n  =(1+2rsinθ +r^2 )^(n/2)  e^(−in arctan(((rcosθ)/(1+rsinθ))))   ⇒A_n =(1−2rsinθ +r^2 )^(n/2)  e^(inarctan(((rcosθ)/(1−rsinθ))))   +(1+2rsinθ +r^2 )^(n/2)  e^(−inarctan(((rcosθ)/(1+rsinθ))))
letx=reiθ1+ix=1+ireiθ=1+ir(cosθ+isinθ)=1rsinθ+ircosθand1ix=1ireiθ=1ir(cosθ+isinθ)=1+rsinθircosθ1+ix∣=(1rsinθ)2+r2cos2θ=12rsinθ+r21+ix=12rsinθ+r2eiarctan(rcosθ1rsinθ)(1+ix)n=(12rsinθ+r2)n2einarctan(rcosθ1rsinθ)1ix∣=(1+rsinθ)2+r2cos2θ=1+2rsinθ+r21ix=1+2rsinθ+r2eiarctan(rcosθ1+rsinθ)(1ix)n=(1+2rsinθ+r2)n2einarctan(rcosθ1+rsinθ)An=(12rsinθ+r2)n2einarctan(rcosθ1rsinθ)+(1+2rsinθ+r2)n2einarctan(rcosθ1+rsinθ)
Answered by mathmax by abdo last updated on 27/May/21
another way  A_n (x)=Σ_(k=0) ^n C_n ^k (ix)^k  +Σ_(k=0) ^n  C_n ^k (−ix)^k   =Σ_(k=0) ^n  C_n ^k (i^k  +(−i)^k )x^k   = Σ_(p=0) ^([(n/2)])  C_n ^(2p)  2(−1)^p  x^(2p)   =2 Σ_(p=0) ^([(n/2)])  C_n ^(2p) (−1)^p  x^(2p)
anotherwayAn(x)=k=0nCnk(ix)k+k=0nCnk(ix)k=k=0nCnk(ik+(i)k)xk=p=0[n2]Cn2p2(1)px2p=2p=0[n2]Cn2p(1)px2p

Leave a Reply

Your email address will not be published. Required fields are marked *