Menu Close

Simplify-log-3-4i-7-24i-




Question Number 1794 by Rasheed Soomro last updated on 29/Sep/15
Simplify  log_((3+4i)) (−7+24i)
Simplifylog(3+4i)(7+24i)
Commented by 112358 last updated on 29/Sep/15
Define p=log_((3+4i)) (−7+24i)  By change of base to base e  we can rewrite p as       p=((ln(−7+24i))/(ln(3+4i))) .  Let q=3+4i. In exponential form  we get q=5e^(itan^(−1) (4/3))  so then  lnq=ln5+itan^(−1) (4/3).  Let w=−7+24i. The modulus of  w is found to be ∣w∣=25. The   principal argument θ of w is given  by θ=π−tan^(−1) (((24)/7)). We then get  in exponential form   w=25e^(i(π−tan^(−1) (24/7))) . Therefore  lnw=ln25+i(π−tan^(−1) (24/7))  Thus  p=((ln25+i(π−tan^(−1) (24/7)))/(ln5+itan^(−1) (4/3)))  p=(((2ln5+i(π−tan^(−1) [((24)/7)]))(ln5−itan^(−1) [(4/3)]))/((ln5)^2 +(tan^(−1) [(4/3)])^2 ))  p=((2(ln5)^2 +(π−tan^(−1) [((24)/7)])tan^(−1) [(4/3)]+i{π−tan^(−1) [((24)/7)]−2(tan^(−1) [(4/3)])}ln5)/((ln5)^2 +(tan^(−1) [(4/3)])^2 ))  From this one can extract the  real and imaginary parts of p.  So log_((3+4i)) (−7+24i)=x+iy  where x=Re(p) and y=Im(p).
Definep=log(3+4i)(7+24i)Bychangeofbasetobaseewecanrewritepasp=ln(7+24i)ln(3+4i).Letq=3+4i.Inexponentialformwegetq=5eitan1(4/3)sothenlnq=ln5+itan1(4/3).Letw=7+24i.Themodulusofwisfoundtobew∣=25.Theprincipalargumentθofwisgivenbyθ=πtan1(247).Wethengetinexponentialformw=25ei(πtan1(24/7)).Thereforelnw=ln25+i(πtan1(24/7))Thusp=ln25+i(πtan1(24/7))ln5+itan1(4/3)p=(2ln5+i(πtan1[247]))(ln5itan1[43])(ln5)2+(tan1[43])2p=2(ln5)2+(πtan1[247])tan1[43]+i{πtan1[247]2(tan1[43])}ln5(ln5)2+(tan1[43])2Fromthisonecanextracttherealandimaginarypartsofp.Solog(3+4i)(7+24i)=x+iywherex=Re(p)andy=Im(p).

Leave a Reply

Your email address will not be published. Required fields are marked *