Menu Close

sin-1-3-5-tan-1-1-7-




Question Number 133976 by liberty last updated on 26/Feb/21
 sin^(−1) ((3/5))+tan^(−1) ((1/7))=?
$$\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right)=? \\ $$
Answered by bemath last updated on 26/Feb/21
let sin^(−1) ((3/5))=ϑ ⇒ { ((sin ϑ=(3/5))),((tan ϑ=(3/4))) :}  ⇒ sin^(−1) ((3/5))=tan^(−1) ((3/4))    ⇔ sin^(−1) ((3/5))+tan^(−1) ((1/7))=       tan^(−1) ((3/4))+tan^(−1) ((1/7))=      tan^(−1) ((((3/4)+(1/7))/(1−(3/4).(1/7)))) = tan^(−1) (((25)/(25)))=(π/4)
$$\mathrm{let}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)=\vartheta\:\Rightarrow\begin{cases}{\mathrm{sin}\:\vartheta=\frac{\mathrm{3}}{\mathrm{5}}}\\{\mathrm{tan}\:\vartheta=\frac{\mathrm{3}}{\mathrm{4}}}\end{cases} \\ $$$$\Rightarrow\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$ \\ $$$$\Leftrightarrow\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right)= \\ $$$$\:\:\:\:\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right)= \\ $$$$\:\:\:\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{7}}}{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{7}}}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{25}}{\mathrm{25}}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *