Menu Close

sin-1-sin-x-x-sin-1-cos-x-sin-1-tan-x-




Question Number 140497 by benjo_mathlover last updated on 08/May/21
sin^(−1) (sin x)=x  sin^(−1) (cos x)=?  sin^(−1) (tan x)=?
$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{x}\right)=\mathrm{x} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{x}\right)=? \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{tan}\:\mathrm{x}\right)=? \\ $$
Commented by mr W last updated on 08/May/21
sin^(−1) (sin x)=x is not always true.
$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{x}\right)=\mathrm{x}\:{is}\:{not}\:{always}\:{true}. \\ $$
Commented by liberty last updated on 09/May/21
for what value of x this not true?
$$\mathrm{for}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{this}\:\mathrm{not}\:\mathrm{true}? \\ $$
Commented by mr W last updated on 09/May/21
example  sin^(−1) (sin ((5π)/4))=−(π/4)≠((5π)/4)
$${example} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{4}}\right)=−\frac{\pi}{\mathrm{4}}\neq\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$
Commented by liberty last updated on 09/May/21
((5π)/4)∉D since not satisfy the equation
$$\frac{\mathrm{5}\pi}{\mathrm{4}}\notin\mathrm{D}\:\mathrm{since}\:\mathrm{not}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation} \\ $$
Commented by liberty last updated on 09/May/21
y=sin^(−1) (x) has domain −(π/2)≤x≤(π/2)
$$\mathrm{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{has}\:\mathrm{domain}\:−\frac{\pi}{\mathrm{2}}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$
Commented by mr W last updated on 09/May/21
y=sin^(−1) (x) has domain −1≤x≤1  y=sin^(−1) (x) has range −(π/2)≤x≤(π/2)    y=sin^(−1) (sin (x)) has domain −∞≤x≤∞  y=sin^(−1) (sin (x)) has range −(π/2)≤x≤(π/2)
$$\mathrm{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{has}\:\mathrm{domain}\:−\mathrm{1}\leqslant\mathrm{x}\leqslant\mathrm{1} \\ $$$$\mathrm{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\:\mathrm{has}\:{range}\:−\frac{\pi}{\mathrm{2}}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\left(\mathrm{x}\right)\right)\:\mathrm{has}\:\mathrm{domain}\:−\infty\leqslant\mathrm{x}\leqslant\infty \\ $$$$\mathrm{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\left(\mathrm{x}\right)\right)\:\mathrm{has}\:{range}\:−\frac{\pi}{\mathrm{2}}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$
Commented by mr W last updated on 09/May/21
Answered by EDWIN88 last updated on 08/May/21
let sin^(−1) (cos x) = y   cos x = sin y ; sin ((π/2)−x)=sin y   we get y = (π/2)−x so sin^(−1) (cos x) = (π/2)−x
$$\mathrm{let}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{y} \\ $$$$\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{sin}\:\mathrm{y}\:;\:\cancel{\mathrm{sin}}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)=\cancel{\mathrm{sin}}\:\mathrm{y}\: \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{y}\:=\:\frac{\pi}{\mathrm{2}}−\mathrm{x}\:\mathrm{so}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{x}\right)\:=\:\frac{\pi}{\mathrm{2}}−\mathrm{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *