Menu Close

sin-12-13-and-is-in-the-2nd-quadrent-prove-cos-5-13-




Question Number 71146 by sadimuhmud 136 last updated on 12/Oct/19
sin α=((12)/(13))  and α is in the 2nd quadrent.  prove cos α=−(5/(13))
sinα=1213andαisinthe2ndquadrent.provecosα=513
Commented by Rio Michael last updated on 12/Oct/19
sinα = ((12)/(13))  from  sin^2 α + cos^2 α = 1             ⇒ cos^2 α = 1 − sin^2 α                    cos^2 α = 1 − (((12)/(13)))^2                     cosα = ± (√((25)/(169)))                    cosα = −(5/(13))   reason being that the cosine ratio is negative in the second quadrant.
sinα=1213fromsin2α+cos2α=1cos2α=1sin2αcos2α=1(1213)2cosα=±25169cosα=513reasonbeingthatthecosineratioisnegativeinthesecondquadrant.
Answered by Kunal12588 last updated on 12/Oct/19
sin α = ((12)/(13))  using identity :− sin^2  θ + cos^2  θ=1    ⇒cos α = −((√(13^2 −12^2 ))/(13))  [∵ (π/2)<α≤π]  ⇒cos α = −((√(169−144))/(13))=−((√(25))/(13))=−(5/(13))
sinα=1213usingidentity:sin2θ+cos2θ=1cosα=13212213[π2<απ]cosα=16914413=2513=513

Leave a Reply

Your email address will not be published. Required fields are marked *