Menu Close

sin-2-7cos-2-6-find-




Question Number 11781 by tawa last updated on 31/Mar/17
sin(2θ) + 7cos(2θ) = 6  find θ
sin(2θ)+7cos(2θ)=6findθ
Answered by sma3l2996 last updated on 31/Mar/17
2sin(θ)cos(θ)+7cos^2 (θ)−7sin^2 (θ)=6  2sin(θ)cos(θ)+14cos^2 (θ)−7=6  2sin(θ)cos(θ)=13−14cos^2 (θ)  4(1−cos^2 (θ))cos^2 (θ)=13^2 +14^2 cos^4 (θ)−2×13×14cos^2 (θ)  4cos^2 (θ)−4cos^4 (θ)=169+196cos^4 (θ)−364cos^2 (θ)  200cos^4 (θ)−368cos^2 (θ)+169=0  200cos^4 (θ)−((2×184×10(√2))/(10(√2)))cos^2 (θ)+(((184)/(10(√2))))^2 =(((92)/(5(√2))))^2 −169  (10(√2)cos^2 (θ)−((92)/(5(√2))))^2 =((4232)/(25))−169  10(√2)cos^2 (θ)−((92)/(5(√2)))=+_− ((√(3387))/5)   cos^2 (θ)=(+_− ((√(3387))/5)+((92)/(5(√2))))(1/(10(√2)))=+_− ((√(3387))/(50(√2)))+((23)/(25))  cos(θ)=(√(((√(3387))/(50(√2)))+((23)/(25))))  θ=acos((√(((√(3387))/(50(√2)))+((23)/(25)))))+2kπ
2sin(θ)cos(θ)+7cos2(θ)7sin2(θ)=62sin(θ)cos(θ)+14cos2(θ)7=62sin(θ)cos(θ)=1314cos2(θ)4(1cos2(θ))cos2(θ)=132+142cos4(θ)2×13×14cos2(θ)4cos2(θ)4cos4(θ)=169+196cos4(θ)364cos2(θ)200cos4(θ)368cos2(θ)+169=0200cos4(θ)2×184×102102cos2(θ)+(184102)2=(9252)2169(102cos2(θ)9252)2=423225169102cos2(θ)9252=+33875cos2(θ)=(+33875+9252)1102=+3387502+2325cos(θ)=3387502+2325θ=acos(3387502+2325)+2kπ
Commented by tawa last updated on 31/Mar/17
God bless you sir
Godblessyousir
Answered by sandy_suhendra last updated on 31/Mar/17
sin 2θ + 7 cos 2θ=k cos(2θ−α)  =k cos 2θ cos α + k sin 2θ sin α  thus  k cos α=7 and k sin α=1  (k cos α)^2 +(k sin α)^2 =7^2 +1^2   k^2 (sin^2 α+cos^2 α)=50  k=(√(50))=5(√2)    ((k sin α)/(k cos α))=tan α ⇒ tan α =(1/7) ⇒α=8.13°       5(√2) cos(2θ−8.13°)=6  cos(2θ−8.13°)=(6/(5(√2)))  (1) 2θ−8.13°=31.95° + p.360°          2θ=40.08° + p.360°            θ=20.04 + p.180° ⇒p=0, 1, 2, ...       (2) 2θ−8.13°=−31.95°+p.360°          2θ=−23.82° + p.360°            θ=−11.91° + p.180° ⇒p=1, 2, 3, ...
sin2θ+7cos2θ=kcos(2θα)=kcos2θcosα+ksin2θsinαthuskcosα=7andksinα=1(kcosα)2+(ksinα)2=72+12k2(sin2α+cos2α)=50k=50=52ksinαkcosα=tanαtanα=17α=8.13°52cos(2θ8.13°)=6cos(2θ8.13°)=652(1)2θ8.13°=31.95°+p.360°2θ=40.08°+p.360°θ=20.04+p.180°p=0,1,2,(2)2θ8.13°=31.95°+p.360°2θ=23.82°+p.360°θ=11.91°+p.180°p=1,2,3,
Commented by tawa last updated on 31/Mar/17
God bless you sir.
Godblessyousir.
Answered by ajfour last updated on 31/Mar/17
2sin θcos θ+7(cos^2 θ−sin^2 θ )=6  dividing by cos^2 θ   we get:  2tan θ +7(1−tan^2 θ )=6sec^2 θ  2tan θ+7−7tan^2 θ=6+6tan^2 θ  13tan^2 θ−2tan θ−1=0  tan θ = ((2±(√(4+52)))/(26))  θ = tan^(−1)  (((1±(√(14)))/(13)) ) +nπ  .
2sinθcosθ+7(cos2θsin2θ)=6dividingbycos2θweget:2tanθ+7(1tan2θ)=6sec2θ2tanθ+77tan2θ=6+6tan2θ13tan2θ2tanθ1=0tanθ=2±4+5226θ=tan1(1±1413)+nπ.
Commented by tawa last updated on 31/Mar/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *