Question Number 132610 by liberty last updated on 15/Feb/21
$$\Omega=\int\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)}\:\mathrm{dx}\: \\ $$
Answered by Dwaipayan Shikari last updated on 15/Feb/21
$$\int\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{dx}={x}−\int\frac{\mathrm{1}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$={x}−\int\frac{{cosec}^{\mathrm{2}} {x}}{{cot}^{\mathrm{2}} {x}+\mathrm{2}}{dx}={x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \frac{{cotx}}{\:\sqrt{\mathrm{2}}}+{C} \\ $$
Answered by mathmax by abdo last updated on 15/Feb/21
$$\Phi\:=\int\:\:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:\Rightarrow\Phi\:=\int\:\:\frac{\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}}}{\mathrm{1}+\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}}}\mathrm{dx} \\ $$$$=\int\:\:\frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{3}−\mathrm{cos}\left(\mathrm{2x}\right)}\mathrm{dx}\:=_{\mathrm{2x}=\mathrm{t}} \frac{\mathrm{1}}{\mathrm{2}}\:\:\:\int\:\:\frac{\mathrm{1}−\mathrm{cost}}{\mathrm{3}−\mathrm{cost}}\mathrm{dt} \\ $$$$=_{\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)=\mathrm{y}} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{\mathrm{1}−\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}{\mathrm{3}−\frac{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}\frac{\mathrm{2dy}}{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }\:=\int\:\:\frac{\mathrm{1}+\mathrm{y}^{\mathrm{2}} −\mathrm{1}+\mathrm{y}^{\mathrm{2}} }{\mathrm{3}+\mathrm{3y}^{\mathrm{2}} −\mathrm{1}+\mathrm{y}^{\mathrm{2}} }\mathrm{dy} \\ $$$$=\int\:\:\frac{\mathrm{2y}^{\mathrm{2}} }{\mathrm{2}+\mathrm{4y}^{\mathrm{2}} }\mathrm{dy}\:=\int\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2y}^{\mathrm{2}} }\mathrm{dy}\:=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{2y}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}}{\mathrm{1}+\mathrm{2y}^{\mathrm{2}} }\mathrm{dy} \\ $$$$=\frac{\mathrm{y}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{dy}}{\mathrm{1}+\mathrm{2y}^{\mathrm{2}} }\left(\rightarrow\mathrm{t}=\sqrt{\mathrm{2}}\mathrm{y}\right) \\ $$$$=\frac{\mathrm{y}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{\mathrm{dt}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}\:=\frac{\mathrm{y}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\mathrm{arctan}\left(\sqrt{\mathrm{2}}\mathrm{y}\right)+\mathrm{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}\left(\mathrm{x}\right)−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}\mathrm{tan}\left(\mathrm{x}\right)\right)+\mathrm{C} \\ $$