sin-2-x-pi-4-sin-2-x-pi-4-7-cos-x- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 135497 by EDWIN88 last updated on 13/Mar/21 sin2(x+π4)=sin2(x−π4)+7cosx Answered by john_santu last updated on 13/Mar/21 ⇔sin2(x+π4)−sin2(x−π4)=7cosx⇒cos2(π2−x−π4)−sin2(x−π4)=7cosx⇒cos2(x−π4)−sin2(x−π4)=7cosx⇒cos(2x−π2)=7cosx⇒sin2x=7cosx⇒cosx(2sinx−7)=0→cosx=0,x=±π2+2kπ4kπ±π2x=π2(4k±1);k∈Z Answered by mathmax by abdo last updated on 13/Mar/21 e⇒1−cos(2x+π2)2−1−cos(2x−π2)2−7cosx=0⇒1+sin(2x)−1+sin(2x)−27cosx=0⇒2sin(2x)−27cosx=0⇒sin(2x)−7cosx=0⇒2sinxcosx−7cosx=0⇒cosx(2sinx−7)=0⇒cosx=0or2sinx=7cosx=0⇒x=+−π2+kπandsinx=72isimpossibledueto72>1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2x-2-5x-2-x-2-x-2-x-2-3x-2-Next Next post: sin-x-3-cos-x-sin-3x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.