Menu Close

sin-2-x-pi-4-sin-2-x-pi-4-7-cos-x-




Question Number 135497 by EDWIN88 last updated on 13/Mar/21
sin^2 (x+(π/4)) = sin^2 (x−(π/4))+ (√7) cos x
sin2(x+π4)=sin2(xπ4)+7cosx
Answered by john_santu last updated on 13/Mar/21
⇔ sin^2 (x+(π/4))−sin^2 (x−(π/4))=(√7) cos x  ⇒cos^2 ((π/2)−x−(π/4))−sin^2 (x−(π/4))=(√7) cos x  ⇒cos^2 (x−(π/4))−sin^2 (x−(π/4))=(√7) cos x  ⇒cos (2x−(π/2))=(√7) cos x  ⇒sin 2x = (√7) cos x  ⇒cos x(2sin x−(√7)) = 0  →cos x= 0 , x=±(π/2)+2kπ ((4kπ±π)/2)  x= (π/2)(4k±1) ; k∈ Z
sin2(x+π4)sin2(xπ4)=7cosxcos2(π2xπ4)sin2(xπ4)=7cosxcos2(xπ4)sin2(xπ4)=7cosxcos(2xπ2)=7cosxsin2x=7cosxcosx(2sinx7)=0cosx=0,x=±π2+2kπ4kπ±π2x=π2(4k±1);kZ
Answered by mathmax by abdo last updated on 13/Mar/21
e⇒((1−cos(2x+(π/2)))/2)−((1−cos(2x−(π/2)))/2)−(√7)cosx =0 ⇒  1+sin(2x)−1+sin(2x)−2(√7)cosx =0 ⇒  2sin(2x)−2(√7)cosx =0 ⇒sin(2x)−(√7)cosx =0 ⇒  2sinx cosx−(√7)cosx =0 ⇒cosx(2sinx−(√7)) =0 ⇒cosx=0 or  2sinx =(√7)  cosx =0 ⇒x =+^− (π/2)+kπ   and  sinx =((√7)/2) is impossible due to ((√7)/2)>1
e1cos(2x+π2)21cos(2xπ2)27cosx=01+sin(2x)1+sin(2x)27cosx=02sin(2x)27cosx=0sin(2x)7cosx=02sinxcosx7cosx=0cosx(2sinx7)=0cosx=0or2sinx=7cosx=0x=+π2+kπandsinx=72isimpossibledueto72>1

Leave a Reply

Your email address will not be published. Required fields are marked *