Question Number 12464 by tawa last updated on 23/Apr/17

Answered by ajfour last updated on 23/Apr/17
![sin 3x=3sin x−4sin^3 x I=∫sin^3 (7x)dx =(1/4)∫[3sin (7x)−sin 3(7x)]dx =(1/4)(−(3/7)cos (7x)+((cos (21x))/(21)) )+C =−((3cos (7x))/(28))+((cos (21x))/(84))+C](https://www.tinkutara.com/question/Q12469.png)
Commented by tawa last updated on 23/Apr/17

Answered by sma3l2996 last updated on 23/Apr/17

Commented by tawa last updated on 23/Apr/17

Answered by mrW1 last updated on 23/Apr/17
![∫ sin^3 (7x) dx =(1/7)∫sin^3 (7x)d(7x) =(1/7)∫sin^3 t dt t=7x =−(1/7)∫sin^2 t d(cos t) =−(1/7)∫(1−cos^2 t) d(cos t) =−(1/7)∫(1−u^2 ) du u=cos t=cos (7x) =−(1/7)(∫du−∫u^2 du) =−(1/7)(u−(u^3 /3))+C =(u/(21))(u^2 −3)+C =((cos (7x))/(21))[cos^2 (7x)−3]+C](https://www.tinkutara.com/question/Q12477.png)
Commented by tawa last updated on 23/Apr/17
