Menu Close

sin-4-pi-16-sin-4-3pi-16-sin-4-5pi-16-sin-4-7pi-16-




Question Number 131492 by Ar Brandon last updated on 05/Feb/21
sin^4 (π/(16))+sin^4 ((3π)/(16))+sin^4 ((5π)/(16))+sin^4 ((7π)/(16))
sin4π16+sin43π16+sin45π16+sin47π16
Answered by Dwaipayan Shikari last updated on 05/Feb/21
sin(π/(16))=cos((π/2)−(π/(16)))=cos(((7π)/(16)))    sin(((3π)/(16)))=cos(((5π)/(16)))  Φ=cos^4 (π/(16))+sin^4 (π/(16))+sin^4 ((3π)/(16))+cos^4 ((3π)/(16))  =(1−(1/2)sin^2 (π/8))+(1−(1/2)sin^2 ((3π)/8))  =2−(1/2)(sin^2 (π/8)+sin^2 ((3π)/8))=2−(1/2)(sin^2 (π/8)+cos^2 (π/8))=2−(1/2)=(3/2)
sinπ16=cos(π2π16)=cos(7π16)sin(3π16)=cos(5π16)Φ=cos4π16+sin4π16+sin43π16+cos43π16=(112sin2π8)+(112sin23π8)=212(sin2π8+sin23π8)=212(sin2π8+cos2π8)=212=32
Commented by Dwaipayan Shikari last updated on 05/Feb/21
It will be even nicer if you take the value of sin((π/(16))) ′s   Separately :(   :)  sin((π/(16)))=(1/2)(√(2+(√(2−(√2)))))  ....
Itwillbeevennicerifyoutakethevalueofsin(π16)sSeparately:(:)sin(π16)=122+22.
Commented by Ar Brandon last updated on 05/Feb/21
����
Answered by Ar Brandon last updated on 05/Feb/21