Question Number 140378 by benjo_mathlover last updated on 07/May/21
$$\sqrt{\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}+\mathrm{4cos}\:^{\mathrm{2}} \mathrm{x}}−\sqrt{\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}+\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\mathrm{for}\:\mathrm{x}\in\:\left[\:\mathrm{0},\mathrm{2}\pi\:\right] \\ $$
Commented by john_santu last updated on 07/May/21
$$\sqrt{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{4cos}\:^{\mathrm{2}} {x}}\:>\:\sqrt{\mathrm{cos}\:^{\mathrm{4}} {x}+\mathrm{4sin}\:^{\mathrm{2}} {x}} \\ $$$$\Rightarrow\mathrm{sin}\:^{\mathrm{2}} {x}\left(\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{4}\right)\:>\:\mathrm{cos}\:^{\mathrm{2}} {x}\left(\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{4}\right) \\ $$$$\Rightarrow\mathrm{sin}\:^{\mathrm{2}} {x}\:>\mathrm{cos}\:^{\mathrm{2}} {x}\: \\ $$$$\Rightarrow\mathrm{sin}\:^{\mathrm{2}} {x}\:>\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$$\left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:{x}+\mathrm{1}\right)>\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}\:<−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\cup\:\mathrm{sin}\:{x}\:>\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\: \\ $$
Answered by john_santu last updated on 07/May/21
$$\sqrt{\mathrm{sin}\:^{\mathrm{4}} {x}+\mathrm{4}−\mathrm{4sin}\:^{\mathrm{2}} {x}}\:−\sqrt{\mathrm{cos}\:^{\mathrm{4}} {x}+\mathrm{4}−\mathrm{4cos}\:^{\mathrm{2}} {x}}\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\left(\mathrm{2}−\mathrm{sin}\:^{\mathrm{2}} {x}\right)^{\mathrm{2}} }−\sqrt{\left(\mathrm{2}−\mathrm{cos}\:^{\mathrm{2}} {x}\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\cancel{\mathrm{2}}−\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{2}} {x}−\cancel{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\:\mathrm{2}{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\mathrm{cos}\:\mathrm{2}{x}\:=\:\mathrm{cos}\:\frac{\pi}{\mathrm{3}} \\ $$$$\:\mathrm{2}{x}=\begin{cases}{−\frac{\pi}{\mathrm{3}}\:+\mathrm{2}{n}\pi}\\{\frac{\pi}{\mathrm{3}}+\mathrm{2}{n}\pi}\end{cases}\Leftrightarrow\:\begin{cases}{{x}=−\frac{\pi}{\mathrm{6}}+{n}\pi}\\{{x}=\frac{\pi}{\mathrm{6}}+{n}\pi}\end{cases} \\ $$$${x}\:=\:\left\{\:\frac{\pi}{\mathrm{6}}\:,\:\frac{\mathrm{5}\pi}{\mathrm{6}}\:,\:\frac{\mathrm{7}\pi}{\mathrm{3}}\:,\:\frac{\mathrm{11}\pi}{\mathrm{6}}\:\right\}\: \\ $$
Answered by MJS_new last updated on 07/May/21
$$\sqrt{\mathrm{sin}^{\mathrm{4}} \:{x}\:+\mathrm{4cos}^{\mathrm{2}} \:{x}}−\sqrt{\mathrm{cos}^{\mathrm{4}} \:{x}\:+\mathrm{4sin}^{\mathrm{2}} \:{x}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{let}\:{t}=\mathrm{tan}\:{x} \\ $$$$\sqrt{\left(\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\right)^{\mathrm{4}} +\mathrm{4}\left(\frac{\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\right)^{\mathrm{2}} }−\sqrt{\left(\frac{\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\right)^{\mathrm{4}} +\mathrm{4}\left(\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\left(\frac{{t}^{\mathrm{2}} +\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }−\sqrt{\left(\frac{\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:{t}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}=\mathrm{tan}\:{x} \\ $$$$\Rightarrow\:{x}=\frac{\pi}{\mathrm{6}}\vee{x}=\frac{\mathrm{5}\pi}{\mathrm{6}}\vee{x}=\frac{\mathrm{7}\pi}{\mathrm{6}}\vee{x}=\frac{\mathrm{11}\pi}{\mathrm{6}} \\ $$
Commented by greg_ed last updated on 07/May/21
$$\mathrm{right}\:! \\ $$