Menu Close

sin-5-x-2-sinx-1-x-0-2-




Question Number 75846 by behi83417@gmail.com last updated on 18/Dec/19
sin^5 x+(√2)sinx=1        ,  x∈[0,2𝛑]
sin5x+2sinx=1,x[0,2π]
Answered by MJS last updated on 18/Dec/19
t=sin x  t^5 +(√2)t−1=0  only approximation possible  only one real solution  t≈.634429  ⇒ x=.687270∨x=2.45432
t=sinxt5+2t1=0onlyapproximationpossibleonlyonerealsolutiont.634429x=.687270x=2.45432
Commented by behi83417@gmail.com last updated on 18/Dec/19
thank you proph:MJS.  this is my typo.the original question is:  sin5x+(√2)sinx=1.
thankyouproph:MJS.thisismytypo.theoriginalquestionis:sin5x+2sinx=1.
Answered by MJS last updated on 18/Dec/19
sin 5x +(√2)sin x =1  sin 5x =(16sin^4  x −20sin^2  x +5)sin x  sin x =t  16t^5 −20t^3 +(5+(√2))t=1  t^5 −(5/4)t^3 +((5+(√2))/(16))t−(1/(16))=0  approximation  t_1 ≈.171177  t_2 ≈.551260  t_3 ≈.929365  t_(4, 5) ≈−.825901±.174831i  ⇒  x_(11) ≈.172024; x_(12) ≈2.96957  x_(21) ≈.583873; x_(22) ≈2.55772  x_(31) ≈1.19269; x_(32) ≈1.94890
sin5x+2sinx=1sin5x=(16sin4x20sin2x+5)sinxsinx=t16t520t3+(5+2)t=1t554t3+5+216t116=0approximationt1.171177t2.551260t3.929365t4,5.825901±.174831ix11.172024;x122.96957x21.583873;x222.55772x311.19269;x321.94890

Leave a Reply

Your email address will not be published. Required fields are marked *