Menu Close

sin-5-x-dx-




Question Number 143032 by ZiYangLee last updated on 09/Jun/21
     ∫ sin^(−5) x dx =?
sin5xdx=?
Answered by Olaf_Thorendsen last updated on 09/Jun/21
F(x) = ∫(dx/(sin^5 x))  Let t = tan(x/2)  F(t) = ∫(1/((((2t)/(1+t^2 )))^5 )).((2dt)/(1+t^2 ))  F(t) = (1/(16))∫(((1+t^2 )^4 )/t^5 ) dt  F(t) = (1/(16))∫((1+4t^2 +6t^4 +4t^6 +t^8 )/t^5 ) dt  F(t) = (1/(16))∫((1/t^5 )+(4/t^3 )+(6/t)+4t+t^3 ) dt  F(t) = (1/(16))(−(1/(4t^4 ))−(2/t^2 )+6lnt+2t^2 +(t^4 /4))+C  F(x) = −(1/(64tan^4 (x/2)))−(1/(8tan^2 (x/2)))+  (3/8)ln(tan(x/2))+(1/8)tan^2 (x/2)+((tan^4 (x/2))/(64))+C  F(x) = (1/8)ln(tan(x/2))−((1/(4sin^4 x))+(3/(8sin^2 x)))cosx+C
F(x)=dxsin5xLett=tanx2F(t)=1(2t1+t2)5.2dt1+t2F(t)=116(1+t2)4t5dtF(t)=1161+4t2+6t4+4t6+t8t5dtF(t)=116(1t5+4t3+6t+4t+t3)dtF(t)=116(14t42t2+6lnt+2t2+t44)+CF(x)=164tan4x218tan2x2+38ln(tanx2)+18tan2x2+tan4x264+CF(x)=18ln(tanx2)(14sin4x+38sin2x)cosx+C

Leave a Reply

Your email address will not be published. Required fields are marked *