Menu Close

sin-pi-1-3-sin-4pi-2-3-sin-9pi-3-3-sin-16pi-4-3-pi-pi-12-1-3-pi-2pi-




Question Number 133432 by Dwaipayan Shikari last updated on 22/Feb/21
((sin(√π))/1^3 )+((sin(√(4π)))/2^3 )+((sin(√(9π)))/3^3 )+((sin(√(16π)))/4^3 )+....=((π(√π))/(12))(1−3(√π)+2π)
sinπ13+sin4π23+sin9π33+sin16π43+.=ππ12(13π+2π)
Answered by mindispower last updated on 24/Feb/21
Σ_(n≥0) ((sim(nx))/n)=((π−x)/2_ )  ⇒Σ((cos(nx))/n^2 )=−(π/2)x+(x^2 /4)+(π^2 /6)  ⇒Σ_(n≥1) ((sin(nx))/n^3 )=−((πx^2 )/4)+(x^3 /(12))+(π^2 /6)x=f(x)  ((sin((√π)))/1^3 )+((sin((√(4π))))/2^2 )+.....+((sin((√(n^2 π))))/n^2 )+...  =Σ((sin(n(√π)))/n^3 )=f((√π))=−(π^2 /4)+((π(√π))/(12))+((π^2 (√π))/6)  =((π(√π))/(12))(1−3(√π)+2π)
n0sim(nx)n=πx2Σcos(nx)n2=π2x+x24+π26n1sin(nx)n3=πx24+x312+π26x=f(x)sin(π)13+sin(4π)22+..+sin(n2π)n2+=Σsin(nπ)n3=f(π)=π24+ππ12+π2π6=ππ12(13π+2π)

Leave a Reply

Your email address will not be published. Required fields are marked *